Accelerated Corrosion Testing for Automotive Applications

Andy Francis – Marketing Director

Bill Tobin – Senior Technical Marketing Specialist

Dave Duecker – Technical Marketing Specialist

Sean Fowler – Senior Technical Director

Q-Lab Corporation

Click here to view the presentation.

Housekeeping

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides.

- Our archived webinars are hosted at: <u>q-lab.com/webinars</u>
- Use the Q&A feature in Zoom to ask us questions today!

Thank you for attending our webinar!

We hope you found our webinar on Automotive Corrosion Testing to be helpful and insightful.

Topics

- Automotive Corrosion overview
- Recent developments in Cyclic Corrosion Testing
 - Relative humidity control
 - Electrolyte (salt) solutions
- Modern cyclic corrosion test methods and laboratory equipment

Corrosion of Automotive Components

Accelerated Automotive Corrosion Testing

Q

What Causes Automotive Corrosion?

- Exposure to a corrosive climate
 - Wet and dry cycles
- Accelerated if chemicals present
 - Salt, Acid Rain
- Metal becomes exposed
 - Scratch, impact, chip

Paint or coating may not protect after the initial damage

Mechanics of Corrosion

Accelerated Automotive Corrosion Testing

Q

Corrosion Types

Cosmetic corrosion

- Paint Protection
- High Moisture
- Road Splash Effect

Structural Corrosion

- No UV
- Parts are coated?

Accelerated Automotive Corrosion Testing

Corrosive failure modes

5xxx series Aluminium joined to Carbon Fiber

- Mixed material construction
 - Galvanic corrosion
 - Crevice corrosion
 - Filiform corrosion

Steel rivets into sheet aluminium

 Critical to correlate laboratory test methods to real world conditions

Corrosive failure modes

Filiform corrosion on 6xxx series painted sheet aluminium.

Filiform corrosion on (lacquered) diamond cut road wheel surface, Al-Si₇Mg

Accelerated by galvanic & crevice conditions, cut edges, reworked surfaces

Automotive Corrosion Testing Component level

Test Method Types

- Neutral Salt Spray
- CCT
- CASS

Test Specimen Types

- Flat panels/coupons: open, crevice, cosmetic
- Full components: e.g. fasteners, exhaust trim, badges, wheels

Automotive Corrosion Testing Whole Vehicle

- Humidity & temperature
- Salt spray
- Drive cycles (dust tracks, off road, durability roads)
- Teardown & evaluations

Automotive Corrosion Testing Objectives

- **Objective 1**: Determine performance *before* and *after* damage
- **Objective 2**: Select and use realistic test methods
- **Objective 3**: Accelerate test and generate correlative results

Recent advances in cyclic corrosion testing help us to reach these objectives

Laboratory Accelerated Corrosion Testing

Cyclic Testing and Relative Humidity Control

Accelerated Outdoor Weathering Testing

What is changing about cyclic corrosion testing, and why?

- Cyclic tests like PV1210 and JASO M609 more realistic than simple tests like ASTM B117 but not good enough for all applications
- Modern Corrosion tests control and maintain RH between 50-90%

Key Aspects of Modern Corrosion Tests

- Specific relative humidity settings (not just ambient, wet, or dry)
- Controlled temp/RH and transitions to improve reproducibility
- Custom electrolyte (salt) solutions
- Salt "Fog" sometimes replaced by direct spray ("Shower")

Summary of Environmental Conditions in Modern Automotive Corrosion Standards

Cycle	Solution	Spray Type	RH < 50%	50%≤RH<76%	RH≥76%
Ford L-467/Volvo (ACT2)	NaCl 0.5% pH uncontrolled	Shower	0%	66%	34%
GMW 14872	NaCl 0.9% CaCl ₂ 0.1% NaHCO ₃ 0.075% pH uncontrolled	Shower	46% (22% below RH30%)	16%	38%
Renault D17 2028 (ECC1)	NaCl 1.0% pH =4.0 (H ₂ SO ₄)	Fog	8%	62%	30%
VDA 233-102	NaCl 1.0% pH neutral	Fog	1%*	39%	60%
Volvo ACT1	NaCl 1.0% pH =4.2 (H ₂ SO ₄)	Shower	17%	31%	52%

Variety of electrolyte solutions and acidities

Q

)-LAB

Summary of Environmental Conditions in Modern Automotive Corrosion Standards

Cycle	Solution	Spray Type	RH < 50%	50%≤RH<76%	RH≥76%	
Ford L-467/Volvo (ACT2)	NaCl 0.5% pH uncontrolled	Shower	0%	66%	34%	
GMW 14872	NaCl 0.9% CaCl ₂ 0.1% NaHCO ₃ 0.075% pH uncontrolled	Shower	46% (22% below RH30%)	16%	38%	
Renault D17 2028 (ECC1)	NaCl 1.0% pH =4.0 (H ₂ SO ₄)	Fog	8%	62%	30%	
VDA 233-102	NaCl 1.0% pH neutral	Fog	1%*	39%	60%	
Volvo ACT1	NaCl 1.0% pH =4.2 (H ₂ SO ₄)	Shower	17%	31%	52%	

Shower and Fog still both used widely

Accelerated Automotive Corrosion Testing

Fog and Shower

- Atomizing nozzle
- Separate compressed air and liquid solution lines
- Controlled by pump speed and air pressure

- Non-compressed air nozzles installed over existing atomizing fog nozzle
- Controlled by adjustable pump pressure and spray on/off cycling

Advantages of Shower (Spray)

- High volume spray wets specimens faster than traditional fog (~100× more volume)
- Spray volume can be controlled to adjust corrosion rates
- Fixed position with uniform coverage of chamber; no need for constant user adjustment
- Flow rate detection alerts user if a nozzle is plugged
- Self-cleaning with DI water

Q-FOG CRH Shower Uniformity 40 positions (Ford L-467, Volvo ACT2)

Summary of Environmental Conditions in Modern Automotive Corrosion Standards

Cycle	Solution	Spray Type	RH < 50%	50%≤RH<76%	RH≥76%
Ford L-467/Volvo (ACT2)	NaCl 0.5% pH uncontrolled	Shower	0%	66%	34%
GMW 14872	NaCl 0.9% CaCl ₂ 0.1% NaHCO ₃ 0.075% pH uncontrolled	Shower	46% (22% below RH30%)	16%	38%
Renault D17 2028 (ECC1)	NaCl 1.0% pH =4.0 (H ₂ SO ₄)	Fog	8%	62%	30%
VDA 233-102	NaCl 1.0% pH neutral	Fog	1%*	39%	60%
Volvo ACT1	NaCl 1.0% pH =4.2 (H ₂ SO ₄)	Shower	17%	31%	52%

All standards require control at intermediate values of Relative Humidity

RH Conditions in the Natural Environment

- All regions spend considerable time at intermediate RH (around 76%)
- Modern test standards recognize this and control RH at these levels!

Relative Humidity "Controlling the Middle"

- RH control between 50% and 90% is critical
- Wet and Dry Cycling cannot do this
 - Can only do wet, dry, ambient
 - No control of RH transition times
 - Variable specimen dry-off rates

Corrosion Chamber with Metal Panels

Q

Environmental Chamber

100

Test Chamber Types

Corrosion/Salt Spray

- More rectangular than square
- Single layer specimen mounting
- Stainless steels won't last in the environment
- Static air necessary during salt spray
- Liquid solutions & precipitated salts create microclimates
- Precise control is more difficult
- Dew point reduction is not common

Environmental (Temp & RH)

- Cubic/cuboid in shape
- Multi-layer specimen mounting
- Interiors are usually stainless steel
- Constant air flow (low /high flow types)
- Rarely spray water
- Precise temperature & RH capabilities
- Dew point reduction is common

Q-FOG CRH

- Controlled linear transitions of temperature & RH
- Dehumidification via air preconditioner
- -HSCR model features Rapid Ramp Heater for fast transitions

Q-FOG CRH Air Pre-Conditioner

- Delivers consistently dry air to system
- Hot or cold
 - Expands range of achievable conditions
- Allows precise control of temp and RH transitions

Performance Improvement with Air Preconditioner

Accelerated Automotive Corrosion Testing

Q

)-LAB

Q-FOG CRH: Meets Test Conditions in All Major Automotive Standards

Accelerated Automotive Corrosion Testing

QLAE

Q-FOG CRH: Standards Met

Test Standard	Standard Model	Rapid Ramp Heater
JASO M609		\checkmark
CCT-C	F10	\checkmark
CCT-I		\checkmark
CCT-IV		\checkmark
Renault D17-2028 (ECC1)	\checkmark	\checkmark
Volvo VCS 1027, 149 (ACT I)	\checkmark	✓
Volvo VCS 1027, 1449 (ACT II)	\checkmark	\checkmark
GMW 14872	✓	\checkmark

JASO M609 (ISO 14993, 11997-1)

- Chamber Volume 1100 L
- Chamber Load 250 Steel Panels, 3" × 6"
- FOG Solution 5% NaCl Solution
- Laboratory Room Temperature 28-30 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	FOG	35 °C		2:00	< 0:30
2	RH	60 °C	25 %	4:00	< 0:30
3	RH	50 °C	100 %	2:00	< 0:15
4	Final Step -	- Go To Step 1			

Q

)-LAB

JASO M609

Transition times for JASO M609 in full Q-FOG CRH 1100 HSCR Chamber.

	Function	Transition	Transition Time Requirement	Actual Temperature Transition Time	Actual RH Transition Time
	Fog to Dry	35 °C → 60 ± 1 °C	< 0:30	0:13	0:14
– JASO M609	Dry to Wet	60 ± 1 °C → 50 ± 1 °C < 30% RH → > 95% RH	< 0:15	0:04	0:15
	Wet to Fog	50 ± 1 °C → 35 °C > 95% RH → FOG	< 0:30	0:06	
Accelerated Auto Corrosion Testing	motive	33			We make testing simple.

- Chamber Volume 1100 L
- Chamber Load 250 Steel Panels, 3" × 6"
- FOG Solution 5% NaCl Solution
- Laboratory Room Temperature 30-35 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	FOG	50 °C		4:00	< 0:30
2	RH	70 °C	25 %	5:00	< 0:30
3	RH	50 °C	87 %	12:00	< 0:30
4	RH	70 °C	25 %	2:00	< 0:30
5	RH	23 °C*	60 %*	1:00	
6	Final Step – G	o To Step 1			
*Indicates no value specified in the test method but a value is programmed into the tester					

QLAB

Q

- Chamber Volume 1100 L
- Chamber Load Empty
- FOG Solution DI Water
- Laboratory Room Temperature 22-25°C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	FOG	50 °C		0:15	
2	RH	60 °C	25 %	2:30	< 0:30
3	RH	60 °C	95 %	1:15	< 0:30
4	Subcycle*		Repeat st	eps 5-6 5x	
5	RH	60 °C	25 %	2:40	< 0:30
6	RH	60 °C	95 %	1:20	< 0:30
7	Final Step –	Go To Step 1			

QLAB

Closing remarks

- Corrosion is a major problem that paint, galvanization, and anodization methods try to prevent
- Modern corrosion test methods are used to evaluate these techniques
 - Combine salt spray and environmental tests
 - Use linear temperature/RH transitions & accurate RH control
- A variety of tests are available, including both salt fog and shower
- Q-FOG CRH delivers stable test conditions, controlled transitions, and the –HSCR model can meet even demanding cyclic automotive tests like JASO M609

Thank you for your attention!

Questions? info@q-lab.com

Accelerated Automotive Corrosion Testing