Automotive Interior and Exterior Weathering Testing

Presented by Q-Lab

View Recorded Presentation

Q-Lab's Weathering Webinar Series

- Today is the first of our fivepart webinar series on special weathering testing topics
- Our upcoming and archived webinars are hosted at: <u>q-lab.com/webinars</u>

Date	Торіс
14 Apr	Automotive Interior and Exterior Weathering Testing
21 Apr	Modern Automotive Weathering Test: ASTM D7869
28 Apr	Light Stability Testing of Home and Personal Care Products
05 May	Water Delivery in Accelerated Weathering Testing
12 May	Correlation in Accelerated Weathering and Corrosion Testing

QLAE

Administrative

- You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides
- Use the Q&A feature in Zoom to ask us questions today! We'll stay on after the presentation is completed to answer all questions

Thank you for attending our webinar!

We hope you found our webinar on *Automotive Interior and Exterior Weathering Testing* to be helpful and insightful. The link below will give you access to the slides and recorded webinar.

You can help us continue to provide valuable and high quality content by completing our <u>3-question survey</u> about your webinar experience. Every piece of feedback is carefully reviewed by a member of our team.

Today's Agenda

- Weathering of automotive components
- Weathering science basics
- Natural outdoor testing
- Accelerated laboratory testing
- Automotive test methods

4

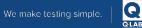
Weathering of Automotive Components

Why is it worthwhile to conduct weathering testing?

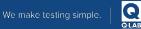
Weathering of Auto Exteriors

Color change and gloss loss

Weathering of Auto Exteriors


Physical and Chemical failures

7 |



Weathering of Auto Exteriors

Physical and Chemical failures



Weathering of Auto Interiors

Physical and Appearance failures

Why Do Weathering Testing?

High gloss and color integrity

Fading, cracking, peeling

Weathering testing can mean the difference between happy customers and ... the customer on the right

Weathering Science Basics

Why do interior and exterior automotive

components fail in service?

What is Weathering?

Changes in material properties resulting from exposure to the radiant energy present in sunlight in combination with heat (including temperature cycling) and water in its various states, predominately as humidity, dew, and rain.

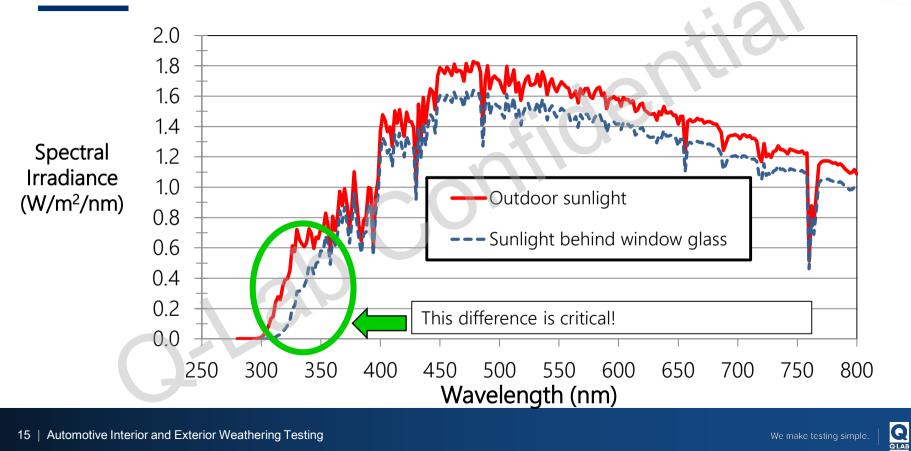
QLAE

Forces of Weathering

Know Your Enemy!

- Sunlight
- Heat
- Water

*Other factors can impact weathering as well but we will not focus on those today

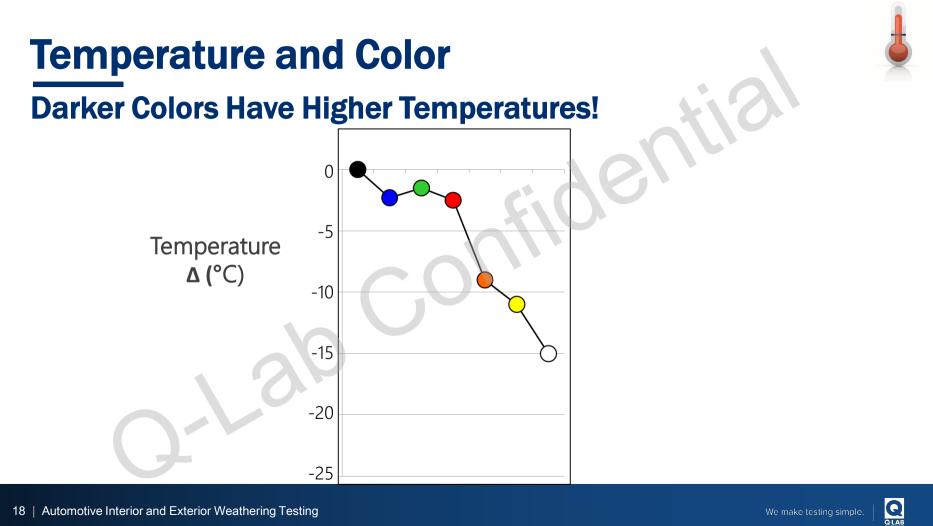

Ultraviolet (UV) light is responsible for most weathering degradation

UV is only 7% of the sunlight spectrum but it causes virtually all polymer degradation!

QLAE

Sunlight Exterior vs Sunlight Interior

Factors Affecting Automobile Glass Light Filtering


- Tint
- Thickness
- Lamination

- Dimensional change
- Evaporation
- Thermal aging
- Thermal cycling



Heat behind Window Glass

Temperature of automobile interior components behind window glass can exceed 100 °C

Major Effects of Water

- Chemical Reactions
 - Reactions in solution
 - Facilitates reaction via increase in oxygen transport

- Physical Effects
 - Erosion
 - Absorption/freeze-thaw
 - Thermal shock
 - Impact (material loss)

Water in Service Environments

Humidity

- Affects time of wetness
- Exterior and interior

- Washing of surfaces
- Chalking
- Thermal shock

High O₂ content
Long dwell time

PRIMARY SOURCE OF

OUTDOOR WETNESS

Natural Outdoor Weathering Testing

Benchmark test data from realistic exposures

45° south-facing exposure

Mesh backing for three-dimensional components

Black Box Testing

- Imitates auto trunk and hood conditions
- Developed by GM in 1950's
- High temperature
- SAE J1976

Under-Glass Exposures for Interior Components


Whole Car Testing

- Testing of entire vehicle
- Best simulation of the end use includes exterior and interior weathering
- All parts, materials and components interact during the weathering process
- Thermal radiation studies commonly performed

Accelerated Outdoor Weathering Testing

Realistic exposures done faster

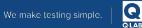
AIM Box

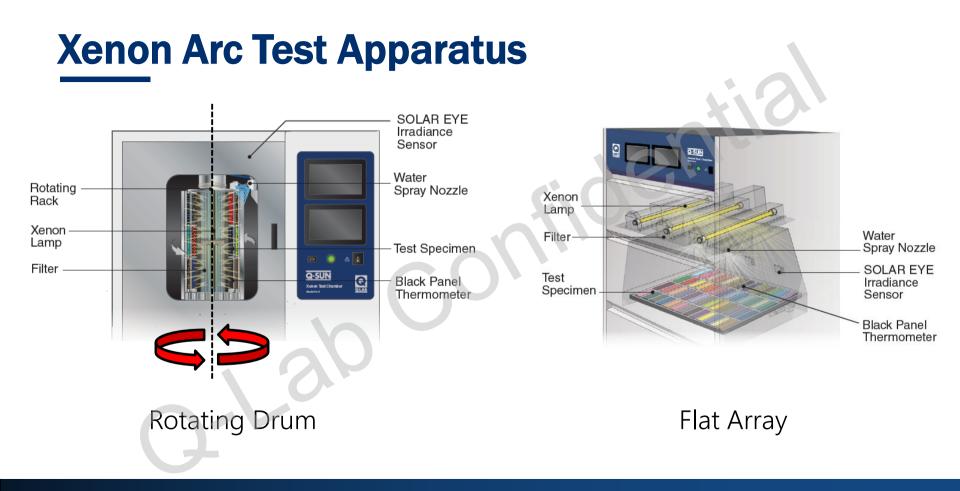
"Automotive Interior Materials" Box

- Reproduces extreme heat from automotive interior
- Can test entire instrument panel
- Different plastics experience different thermal expansion
- Generates differential stresses between different interior plastics

Natural Sunlight Concentrator: Q-TRAC

Natural Sunlight Concentrator: Q-TRAC




- Tracks the sun during the day
- Delivers 5 \times as much UV as a natural exposure
- Fast results with natural solar spectrum

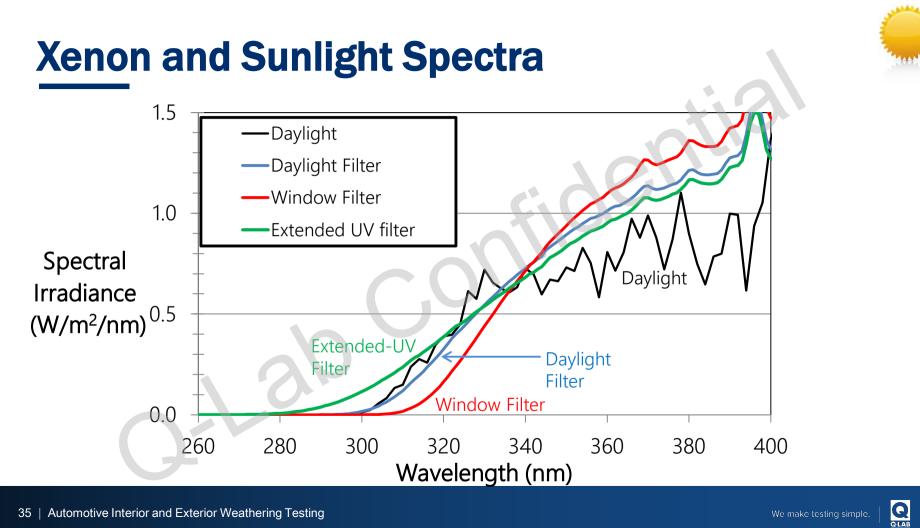
Laboratory Weathering Testing

Accelerating testing for faster results than outdoor

Optical Filters

34

- **Daylight** (for exterior components)
- Window (for behind-glass interior components)
- Extended UV (for harsh testing, quality control)



Flat array filter

We make testing simple.

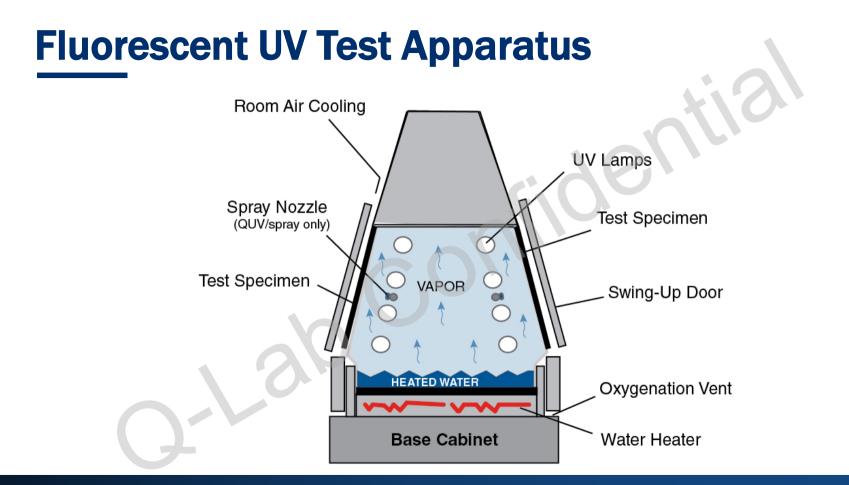
Black Panel Temperature Control

- Most common in test standards
- Approximates maximum specimen surface temperature
- Can be used in combination with chamber air temp sensor and control

Black Panel Temperature Sensors

Panel	ASTM (ISO) Designation	Typical use
q-lab.com	Uninsulated Black Panel (Black Panel)	Metallic substrates (painted metal)
	Insulated Black Panel (Black Standard)	Insulating substrates (polymers)

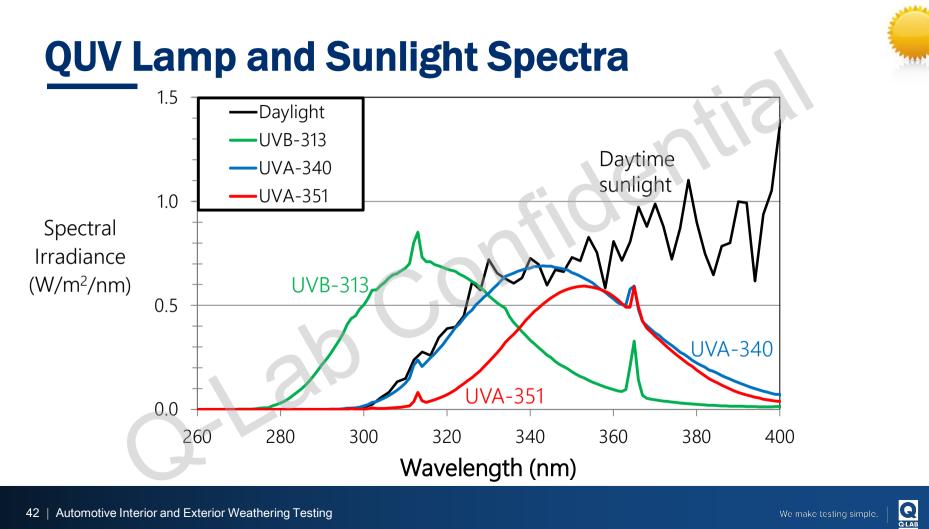
Environmental Control


- CAT and RH control Required by certain test methods
- CAT spec necessary for control of RH
- BP temp always hotter than chamber air temp from absorbing radiant heat
- For many durable materials, RH makes very little difference compared to spray and condensation

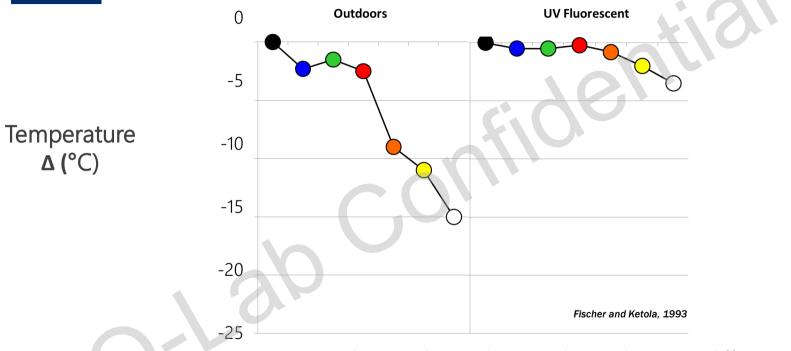
Xenon Arc Water Spray

- Front spray
 - Primary method of water delivery
 - Calibration technique for front spray recently developed (ASTM D7869)
- Back spray
 - Result of a failed experiment intended to generate condensation; persists in some standards
- Dual spray
 - For delivering a 2nd solution, e.g. acid rain, soap
- Immersion (Ponding)
 - Alternative to front spray called out in some standards

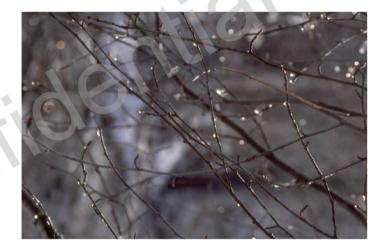
QLAB


QUV Lamps

- UVA-340 (for exterior components)
- UVA-351 (for interior components)
- UVB-313EL (for harsh testing, quality control)



We make testing simple.


QUV Color Temperature

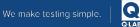
- Xenon testers generate IR heat and reproduce outdoor color temp. differences
- UV fluorescent testers do not

QUV Condensation

- Closest match to natural wetness
- Best way to accelerate water in an laboratory tester
- Elevated temperature
- High O₂ content
- Tester performs distilling you cannot deposit debris on specimens! Water is guaranteed to be clean.

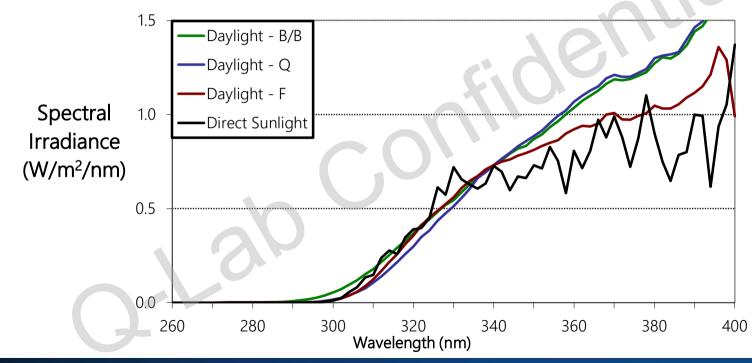


Creating condensation in the QUV is easy and does not require expensive, pure water


- Ensures that parts get fully saturated
- Creates erosion & thermal shock

QLAB

Automotive Accelerated Laboratory Testing


Driving towards better correlation with outdoor weathering

Exterior and Interior Test Conditions Summary

Property	Exterior	Interior
Light spectrum	Daylight / Extended-UV filters UVA-340 lamps	Window filters UVA-351 lamps
Heat	Elevated temperature	Very high temperature
Water	Condensation Water Spray	None
Humidity	Can be controlled; affects time of wetness	Can be controlled; not often critical

Exterior Light Spectra: Which best represents the sun?

Basic Exterior Tests (ASTM)

ASTM G154

TABLE X2.1 Common Exposure Conditions						
Cycle	Lamp	Typical Irradiance	Approximate Wavelength	Exposure Cycle		
1	UVA-340	0.89 W/m²/nm	340 nm	8 h UV at 60 (±3) °C Black Panel Temperature;		
				4 h Condensation at 50 (±3) °C Black Panel Temperature		

Decades of data collected with these tests

<u>ASTM G155</u>

	TABLE X3.1 Some Historical Exposure Conditions						
Cycle	Filter	Irradiance and Wavelength	Exposure Cycle	Black Panel Temperature (BPT) (°C)	Relative Humidity (RH) (%)	Chamber Air Temperature (CAT) (°C)	
1	Daylight	0.35 W/(m ² · nm) @ 340 nm	102 min light 18 min light and water spray ^B	63 Uncon	50 ^A trolled	44 ^A 44 ^A	

- Advantages: history, general applicability and compatibility
- Disadvantages: not scientifically designed, may lack correlation

QLAE

Automotive Weathering Testing Basic Exterior Tests (ISO)

Method A: Artificial accelerated weathering with UVA-340 lamps					
Cycle No.	Exposure period	Lamp type	Irradiance	Black-panel temperature	
1	8 h dry 4 h condensation	UVA-340 (type 1A)	0,76 W·m ⁻² × nm ⁻¹ at 340 nm UV lamps off	60 °C ± 3 °C 50 °C ± 3 °C	

Method A — Exposures using daylight filters (artificial weathering)								
		Irradiance ^b		Black-stand-		D L .:		
Cycle No.	Exposure period	Broadband (300 nm to 400 nm) W/m ²	Narrowband (340 nm) W/(m ^{2.} nm)	ard tempera- ture °C	Chamber temperature °C	Relative humidity %		
1	102 min dry 18 min water spray	60 ± 2 60 ± 2	0,51 ± 0,02 0,51 ± 0,02	65 ± 3	38 ± 3	50 ± 10° —		

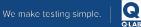
- Advantages: history, general applicability and compatibility
- Disadvantages: not scientifically designed, may lack correlation

ISO 4892-3, 16474-3

Used around the world

ISO 4892-2, 16474-2

QLAE


Basic Exterior Tests: SAE J2020

Program the Cycle Timer to achieve the following test conditions: 8 h UV light exposure at 70 °C, alternating with 4 hours condensation exposure at 50 °C.

Allows for UVA or UVB lamps

- Advantages: history, general applicability, includes water & dark
- Disadvantages: still water-deficient; optical filters with excess UV

Popular Exterior Tests: SAE J2527

Step	Light	Dark	Spray]
1	None.	60 min.	Front and back	Not really needed
2	40 min/ 1.32 kJ•m ⁻² •nm ⁻¹	Not applicable	None	
3	20 min/ 0.66 kJ•m ⁻² •nm ⁻¹	Not applicable	Front	
4	60 min./1.98 kJ∙m ⁻² •nm ⁻¹	Not applicable	None	

One of the few tests to define exposure by energy instead of power

- Advantages: history, general applicability, includes water & dark
- Disadvantages: still water-deficient; optical filters with excess UV

QLAE

High Irradiance Exterior Tests ASTM G154

	TABLE X2.1 Common Exposure Conditions							
Cycle	Lamp	Typical Irradiance	Approximate Wavelength	Exposure Cycle				
6	UVA-340 Harsh spectrui	1.55 ₩/11 /1111	High _{340 nm} intensity	8 h UV at 60 (±3) °C Black Panel Temperature; 4 h Condensation at 50 (±3) °C Black Panel Temperature.				
2	UVB-313	0.71 W/m²/nm	310 nm	4 h UV at 60 (±3) °C Black Panel Temperature; 4 h Condensation at 50 (±3) °C Black Panel Temperature				

ASTM G155 This is called a "3 sun" test, popular with Japanese automakers

	TABLE X3.1 Some Historical Exposure Conditions						
Cycle	Filter	Irradiance and Wavelength	Exposure Cycle	Black Panel Temperature (BPT) (°C)	Relative Humidity (RH)	Chamber Air Temperature (CAT) (°C)	
9	Daylight	180 W/m² @ 300 - 400 nm	102 min light 18 min light and water spray ^B	63	50 trolled	28 ^A	

- Advantages: Speed!!!
- Disadvantages: Correlation

MINTERNATIONAL

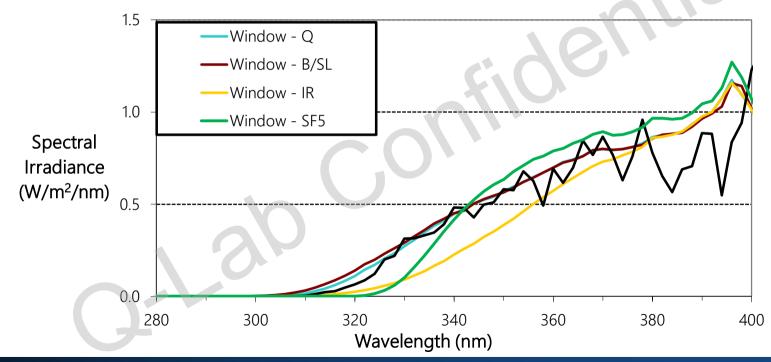
Scientific Exterior Test: ASTM D7869

TABLE 1 Exposure Cycle							
Step Number	Step Minutes	Function	Irradiance Set Point ⁴ at 340 nm W/(m ² ·nm)	Black Panel Temperature Set Point ⁴	Chamber Air Temperature Set Point ^A	Relative Humidity Set Point ⁴	
1	Long 240	dark + spray			40°C	95 %	
2		A solar light	0.40	50°C	42°C	50 %	
3	water 270	A Solar light	0.80	70°C	50°C	50 %	
4	30	day light	0.40	50°C	42°C	50 %	
5	150	dark + spray		_	40°C	95 %	
6	30	dark + spray	-	_	40°C	95 %	
7	20	light	0.40	50°C	42°C	50 %	
8	120	light	0.80	70°C	50°C	50 %	
9	10	dark	_	_	40°C	50 %	
10	Repeat subcycle s	steps 6 to 9 (shown in bold) an additional 3 times (for	a total or 24 h = 1 cycle	e).		

Thermal shock

More on this next week ...

- Advantages: scientific design, light spectrum, temps, water delivery
- Disadvantages: newer, less history, precise control required


QLAE

Exterior Test Summary

- Exterior automotive weathering tests intended to simulate outdoor sunlight, heat, and water experienced by autos
- Wide variety of test conditions
 - Selection depends on equipment, goals, time
 - Material type can influence choice as well

Interior Light Spectra: Which best simulates auto glass?

Products and Interior Test Standards

Product	Test type	Major test standards
Apparel and Design Fabrics	Lightfastness	 ISO 105:B02 ISO 105:B04 (like B02 but with water) AATCC TM 16 (Option 3) Other derivatives like Marks & Spencer
Automotive and high- temp	Lightfastness	 ISO 105:B06 VDA (DIN) 75202 SAE J2412 IUF 402 – Int'l Union of Leather Technologists and Chemists Societies
Outdoor and Industrial Textiles	Weathering	 AATCC TM 169 (xenon) AATCC TM 186 (fluorescent UV) ISO 105:B03 (outdoor)

QLAB

ISO 105-B02, -B04, B06 & -B10


A variety of exterior and interior test protocols

Aspect	B02	B04	B06	B10
Environment	Interior	Exterior	Interior	Exterior
Irradiance (W/m ² TUV)	42	42	45	60
Cut-on wavelength (nm)	315	300	310	290
UV light	Low	Medium	Low	High
IR light	Suppressed	Suppressed	High	High
Water cycle	Dry only	Cyclic dry/spray	Dry only	Cyclic dry/spray option
Graphic				

QLAE

Interior Material Testing

Testing of Leather Specimens per SAE J2412

Basic Interior Tests (ASTM)

ASTM G155

Cycle	Filter	Irradiance and Wavelength	Exposure Cycle	Black Panel Temperature (BPT) (°C)	Relative Humidity (RH) (%)	Chamber Air Temperature (CAT) (°C)
6	Window	1.10 W/(m ² · nm) @ 420 nm	228 min light	63	35	47 ^A
0	Glass	1.10 W/(III-+ IIII) @ 420 IIII	60 min dark ^D	43	90	43 ^A

Very popular test

- Advantages: history, general applicability
- Disadvantages: not scientifically designed, may lack correlation

Basic Interior Tests (ISO)

Cycle No.	Exposure period	Lamp type	Irradiance	Black-panel temperature	
Method B: Artificial accelerated weathering with UVA-351 lamps					
5	24 h dry (no moisture)	UVA-351 (type 1B)	0,76 W·m ⁻² × nm ⁻¹ at 340 nm	50 °C ± 3 °C	

ISO 4892-2,	16474-2

Used around the world

ISO 4892-3, 16474-3

Method B — Exposures using window glass filters						
	Exposure period	Irradiance		Plask stand		
Cycle No.		Broadband (300 nm to 400 nm) W/m ²	Narrowband (420 nm) W/(m ^{2.} nm)	Black-stand- ard tempera- ture °C	Chamber temperature °C	Relative humidity %
2	Continuously dry	50 ± 2	1,10 ± 0,02	65 ± 3	38 ± 3	50 ± 10°
3	Continuously dry	50 ± 2	1,10 ± 0,02	100 ± 3	65 ± 3	20 ± 10

- Advantages: history, general applicability
- Disadvantages: not scientifically designed, may lack correlation

Popular Interior Test: SAE J2412

Controls	Dark Cycle		Light Cycle	
	Target	Tolerance	Target	Tolerance
Automatic Irradiance	None		Contractual Agreement (See Note 1)	$\pm 0.02 \text{Wm}^2 \text{nm}^{-1}$
Black Panel Temperature	38 °C	± 2.5 °C	89 °C	± 2.5 °C
Dry Bulb Temperature	38 °C	± 3 °C	62 °C High T	± 2 °C
Relative Humidity	95%	± 10%	50%	± 10%
Radiant Exposure	Not applicable		Contractual Agreement	
Cycle Duration	1 hour	± 6 minutes	3.8 hours	± 6 minutes
	(See Note 2)	Seems easy	(See Note 2)	

- Advantages: history, general applicability, includes dark
- **Disadvantages:** UV optical filter totally and wildly inappropriate

High Irradiance Interior Tests

ASTM G155

Cycle	Filter	Irradiance and Wavelength	Exposure Cycle	Black Panel Temperature (BPT) (°C)	Relative Humidity (RH) (%)	Chamber Air Temperature (CAT) (°C)	
10	Window Glass	162 W/m ² @ 300 - 400 nm	Continuous Light	89	50	Uncontrolled	
	This is the interior "3 sun" test						
٠	Adv	vantages: Speed!	!!				
٠							

OEM Interior Test Standards

Standard	Name	Who
PV1303	Non-Metallic Materials: Exposure Test of Passenger Compartment Components	Volkswagen
GMW 14162	Colorfastness to Artificial Weathering	General Motors
FLTM BO 116-01	Exposure of Interior Trim Materials using a controlled irradiance water cooled xenon-arc	Ford
D47 1431	Materials and Passenger Compartment Parts Behaviour of the Appearance to Artificial Light at High and Medium Temperatures	Renault
DBL 5555	Finished Parts and Semi-Finished Products Made of Organic Polymer Materials General Conditions and Test Methods	Daimler

Interior Test Summary

- Interior automotive weathering tests intended to simulate sunlight behind glass and trapped heat experienced by auto cabin components
- Wide variety of test conditions
 - Selection depends on equipment, goals, time
 - Material type can influence choice as well

Test Guidelines

- Length of test depends on test conditions, failure mode, and durability of material
 - 2000-3000 hour tests are common for automotive coatings
 - Test to failure
- Critical to determine failure mode of interest
 - Gloss, color, tensile strength, adhesion

Mechanical

Color and gloss

Evaluation measurements performed to ASTM, ISO, other standards

Summary – Automotive Weathering Testing

- Automotive exterior and interior materials experience a wide range of physical and chemical degradation from sunlight, heat, and water in service environments
- Natural outdoor test methods like Black Box, Under-glass, and whole car can simulate automotive conditions
- Accelerated outdoor tests like AIM Box and natural solar concentrator provide enhanced testing outdoors
- Xenon arc and fluorescent UV accelerated test chambers can provide results in a shorter timeframe
- Wide variety of tests for interior and exterior materials to select from

Thank you for your attention!

Questions?

Send your inquiry to: info@q-lab.com

