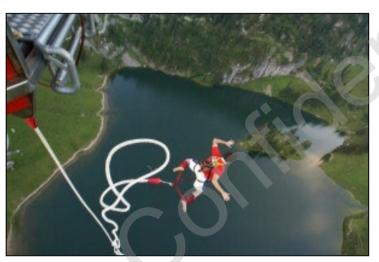
Rund um's Kalibrieren

Aufnahme Abrufen

Richtig geprüft – und doch falsch?

Oder: Was tun, wenn der Chef anruft?

Dr. A. Giehl


Technical and Standards Director Europe

Q-Lab Deutschland GmbH

Hält Ihr Produkt, was Sie versprochen haben?

PSA-Textilien

Hobby – Gurte, Bänder, Fallschirm

Wohnen, Flammschutz von Teppich, Gardinen

Materialversagen kann mehr oder weniger schwerwiegend sein - es ist immer ein Imageschaden

Die häufigsten Fragen:

- Welches ist der richtige Test? (realistische Simulation)
- Wie lange muß ich für eine Produktgarantie von ### Jahren testen?
- Kann man die Prüfung beschleunigen?
- Was bedeutet ein Testergebnis für die Realität? (Korrelation)
- Kann ich mich auf das Ergebnis verlassen?

Aus dem Nähkästchen geplaudert

Heute: Rund um's Kalibrieren

Deine Feinde – deine Waffen

Einflussgröße

Radiometer

Hitze

Sonne

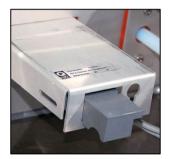
 \rightarrow

BP/iBP + Kammertemperatur

Feuchte

 \rightarrow

Feuchtesensor


Gerätesensor

Radiometer (neu)

Radiometer (alt) BP / iBP

Kombisensor Feuchte + Kammertemperatur

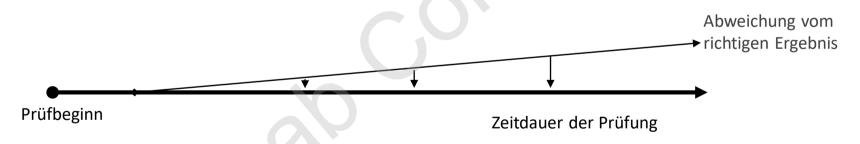
Alle Sensoren für die Q-Lab Tester kommen mit Kalibrier Zertifikat. Aber nicht alle Sensoren lassen sich re-kalibrieren

Warum kalibrieren?

Si vis pacem para bellum (Platon, Cicero, Augustinus)

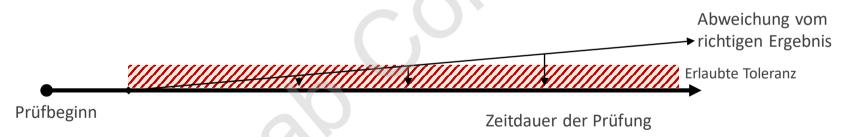

- Nur mit geschärften Waffen kann man seine Feinde besiegen
- Wer vorbereitet ist (=kalibriert+dokumentiert), kann schnell reagieren (auf Fragen)
- Bei nicht-akzeptabler Abweichung zurück bis zum letzten Kalibrierpunkt (ggf. 1 Jahr!)
- Regelmäßiges Kalibrieren/Verifizieren erhöht die Verlässlichkeit

Radiometer (neu)

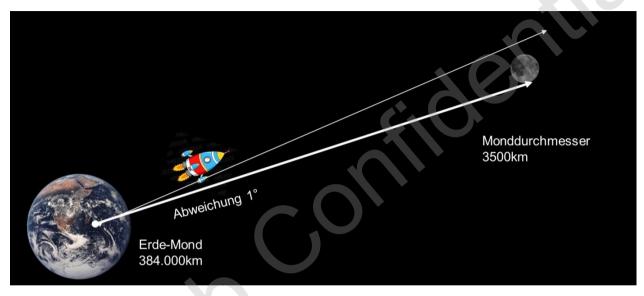

Radiometer (alt) BP / iBP

Kombisensor Feuchte + Kammertemperatur

Warum kalibrieren? Reproduzierbarkeit/Verlässlichkeit


- Alle namhaften Gerätehersteller empfehlen, <u>regelmäßig</u> die Gerätesensoren (z.B. Bestrahlung und Temperatur) zu prüfen.
- Abweichungen können auch während einer längeren Prüfung auftreten

Warum kalibrieren?


Reproduzierbarkeit/Verlässlichkeit

- Alle namhaften Gerätehersteller empfehlen, <u>regelmäßig</u> die Gerätesensoren (z.B. Bestrahlung und Temperatur) zu prüfen.
- Abweichungen können auch während einer längeren Prüfung auftreten

 Auch kleine Abweichungen führen bei langer Prüfdauer zu signifikant unterschiedlichen Ergebnissen.

Reproduzierbarkeit von Ergebnissen

- Abweichung beim Start: 1°
- Die Abweichung am Ziel beträgt 6300km
- Sie verfehlen ihr Ziel um fast 3000km

Regelmäßig kalibrieren

regelmäßig alle Sensoren zu kalibrieren, verringert die Abweichung

Auch bei langer Prüfdauer bleibt die Abweichung gering

Der einfache kundenseitige Abgleich der Q-SUN Xenon Geräte mittels CR20/UC20 Radiometer

How simple is it to calibrate the Q-SUN Xe-3 xenon test chamber?

Durch Beschleunigung schneller zum Ergebnis?

Hinweis: stark vereinfachte Analogie

Ja, aber.....

der Fehler wächst mit

×

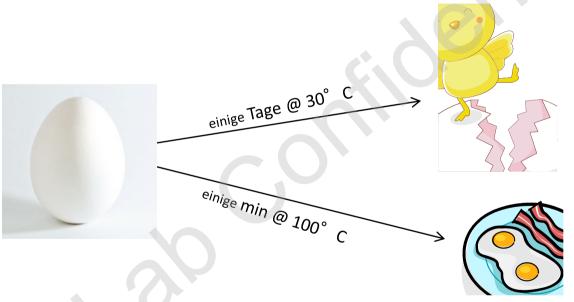
201

=

1 kWh

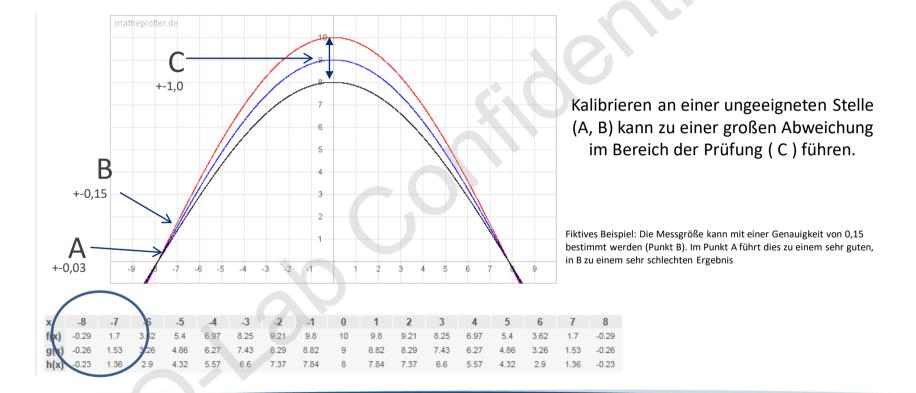
X

10h

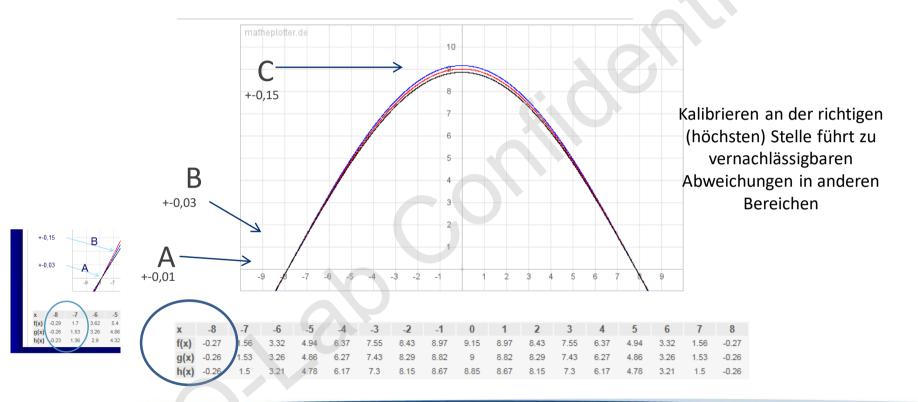

=

1 kWh

Die gleiche Bestrahlungsdosis wird rechnerisch durch höhere Leistung in entsprechend kürzerer Zeit erreicht.


Rechnereien sind geduldig und haben oft viele Nachkommastellen.

Aber nicht alles lässt sich gleichermaßen beschleunigen



Auch Fehler werden "beschleunigt" oder man erhält sogar ein anderes Ergebnis.
-> kühlen Kopf bewahren, gesunden Menschenverstand einschalten, Ergebnis hinterfragen

Immer in dem Bereich kalibrieren, wo auch die Prüfung stattfindet (Bestrahlungsstärke, Temperatur)

Immer in dem Bereich kalibrieren, wo auch die Prüfung stattfindet (Bestrahlungsstärke, Temperatur)

Beispiel aus der Praxis: TUV vs. Wide-Band

zur Erinnerung: die meisten Schädigungen entstehen durch den UV-Anteil

DIN EN 9022

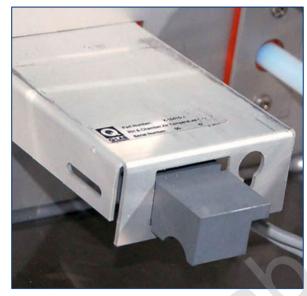
Table 1 - Spectral energy distribution of the radiation source

Toleranzbereiche

Spectral range		Ulti	raviolet		Infrared		
Wavelength band	nm	280 to 320	beyond 320 to 400	beyond 400 to 520	beyond 520 to 640	beyond 640 to 780	beyond 780 to 3 000
Irradiance	W/m ²	5 ± 2	63 ± 15	200 ± 20	186 ± 20	174 ± 20	492 ± 100

1120W/m² +/-180W/m² @280-3000nm +/- 20%

DIN EN ISO 4892-2

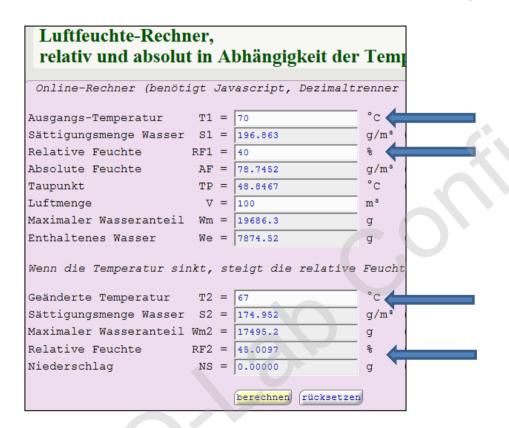

Table 3 — Exposure cycles with temperature control by black-standard thermometer (BST)a

Regelbereiche

	Method	A — Exposures u	ısing daylight filt	ers (artificial w	eathering)		
		Irradi	iance ^b	Black-stand-			
Cycle No.	Exposure period	Broadband (300 nm to 400 nm) W/m ²	Narrowband (340 nm) W/(m²·nm)	ard tempera- ture °C	Chamber temperature °C	Relative humidity %	
1	102 min dry 18 min water spray	60 ± 2 60 ± 2	0,51 ± 0,02 0,51 ± 0,02	65 ± 3 —	38 ± 3 —	50 ± 10° —	

+/- 3%

Der Kombisensor Feuchte/Kammertemperatur



Neues Design mit verbessertem Spritzschutz. Trotzdem nach 1 Jahr austauschen!

- Lieferung mit Zertifikat
- 1 Jahr gültig
- Plug & Play Stecksystem
- Austausch gegen neuen Sensor

Merke: Feuchte ist <u>relativ</u>
!! rH% !!

Der Kombisensor Feuchte/Kammertemperatur

- Seien Sie bei der rel.
 Feuchte nicht zu pingelig.
- Nachkommastellen machen hier keinen Sinn

Temperaturgleichförmigkeit = Feuchtegleichförmigkeit

						Sensor	20%rH	90%rH	transit
						1	39,3	39,2	35,8
1	3			5	7	2	40,1	38,5	34,5
						3	39,2	39,2	35,6
						4	40,1	38,5	34,5
		9				5	39,6	39,3	35,4
						6	39,3	38,6	34,5
2	4			6	8	7	39,8	39,5	35,9
						8	39,3	38,8	34,6
						9	39,5	39,5	34,9
		Vorne/Fron	it						
						Avg	39,58	39,01	35,08
						max	40,1	39,5	35,9
						min	39,2	38,5	34,5
						max-min	0,9	1	1,4
						Dev from max	0,52	0,49	0,82
						Dev from min	0,38	0,51	0,58

BP / iBP Sensoren Schwarztafel / Schwarzstandard

Schwarzstandard auf Kunststoffplatte (ISO)

Schwarztafel: Reine Metallplatte ohne Rückenplatte (ASTM, SAE Jxxx)

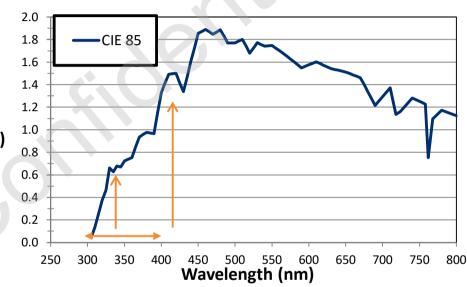
Für viele Tests gegeneinander austauschbar, aber nicht beim kalibrieren

Temperaturkalibrierung QUV und Q-FOG

Direkter Vergleich mit einem kalibrierten Thermometer möglich

Models	Serial Numbers	Status
QUV All		
Q-FOG SSP and CCT	All	Temperature calibration kit available
Q-SUN Xe-1		

Figure 1: Temperature sensor calibration kit.


Bestrahlungsstärke

340nm, 420nm, TUV

Irradiance (W/m²/nm)

Zur Erinnerung: 0.51W/m² @340 = 60W/m² @TUV

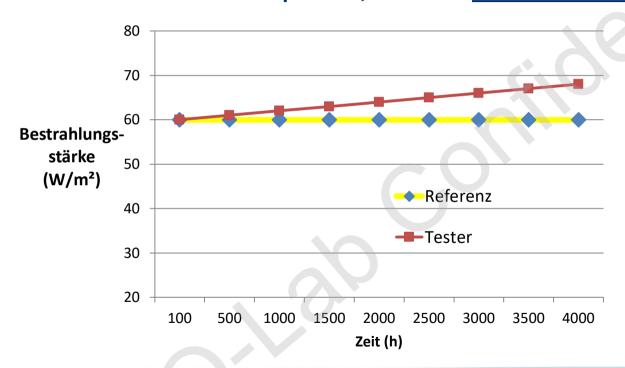
Erst Sensor reinigen, dann kalibrieren!

Reinigung der Sensoren

mit einem weichen Tuch und Alkohol, z.B. iPropanol

	t n		0.1//			ngsstärke	04//-	-24 00	46
Referenz (Kalibrierversion 2)	1	/-A Lam #1	pe (W/m #2	r/nm @34 #3	ionmi) MV	UV-B Lam / #1	ipe (W/in #2	า⁴/nm @3 #3	MW I
Null		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spanne, gesamt		1.70	1.71	1.69	1.70	1.55	1.55	1.54	1.55
Spanne, Mitte		0.79	0.80	0.79	0.79	0.64	0.64	0.63	0.64
Gerät im Test (Kalibrierversion 2)									
Wie erhalten - Null					0.00)			0.00
Wie erhalten - Spanne, gesamt	(A)				1.66	5			1.49
Nach Reinigung, Null					0.00)			0.00
Nach Reinigung - Spanne, gesamt	(B)				1.65	i			1.48
Nach Kalibrierung - Null					0.00)			0.00
Nach Kalibrierung - Spanne, gesamt	(C)				1.70)			1.55
Nach Kalibrierung, Spanne, Mitte					0.79				0.64
% Abweichung nach Reinigung - Spanne, gesamt	(B-A)/A	>)		-1%	•			-1%
% Abweichung nach Reinigung und Railbnerung - Span	ne, gesamt (C-A)/A				2%				4%
Zustand bei Erhalt: Gut. Weiter n Kommentar:	nit Kalibrierung.					Die Kalib Vertrauer Deckung	nsberei	ch bei	
Labor, Temperatur: 23.5°C		Lab	or, relat	tive Feuc	chte:		35.3%	_	
Kalibrierung durchgeführt durch:				Freigegeben durch:					
Mouna Shanhouz			_8	Pach					
Mouna Shakkour - Labortechniker		Bor	is Pach	- Techn	ischer	Manager			
Dieses Zertifikat darf nicht – auch nicht auszugs	weise – ohne Genehr	migung (der Q-La	ab Corpora	ation ve	ervielfältigt	werden	Seite 2	vọn 2

Reinigung der Sensoren

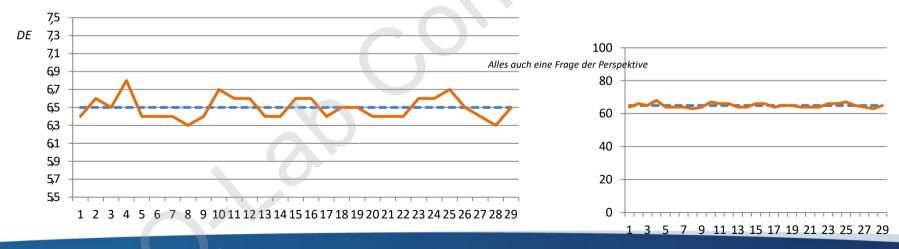

hilft, eine fortschreitenden Drift zu verhindern was passiert, wenn der <u>Referenzsensor</u> blind wird?

Der Referenzsensor würde eine immer geringere Bestrahlungsstärke sehen, aber in Realität...


Reinigung der Sensoren

hilft, eine fortschreitenden Drift zu verhindern was passiert, wenn der Referenzsensor blind wird?

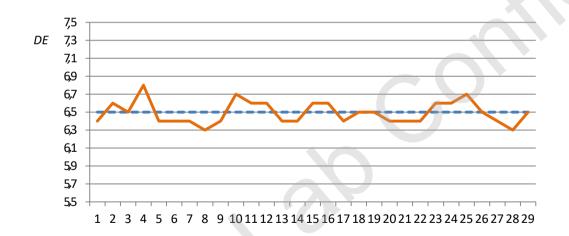
Der Referenzsensor verschiebt den Gerätesensor zur höheren Bestrahlungsstärke. Der Test wird "härter". Falsch-negative Ergebnisse sind möglich.

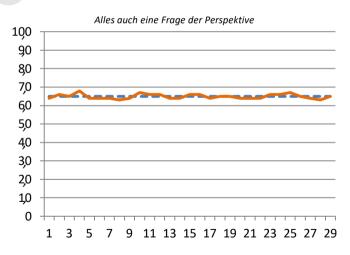

So sollte Ihre regelmäßige Verifizierung per Referenzsensor aussehen:

27

Zusätzlich: "interne Standards"

- Muß in ausreichender Menge und konstanter Qualität vorrätig sein
- Zeigen kurzfristige Abweichungen zwischen den Kalibrierintervallen
- Belegen langfristige Konstanz des Prüfgerätes gegenüber Auditor/Kunden

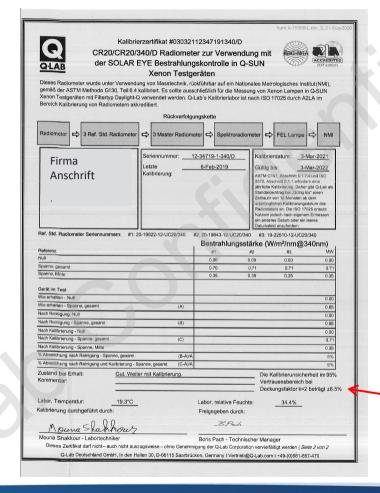



Zusätzlich: "interne Standards"

- Blaue Wolle, PS-Chip, eigenes Material
- immer an der gleichen Stelle im Apparat mitprüfen, z.B. unterhalb des BST im Xe-3 oder oberhalb im Xe-2
- läuft bei jedem Test mit, Prüfdauer an die eigenen Muster angepasst, z.B. 500 oder 1000h
- Auswertung wie bei PV1303 gegen den jeweiligen Vorgänger und als langfristige Datenreihe

Zusätzlich: "interne Standards"

 Auswertung wie bei PV1303 gegen den jeweiligen Vorgänger und als langfristige Datenreihe



Das Kalibrierzertifikat

Daten, Fakten, Hintergründe

Das Kalibrierzertifikat

A2LA Akkreditierungslogo

ILAC International Accreditation Laboratory Cooperation

MRA Mutual Recognition
Agreement

Rückverfolgungskette: Werks-, ISO-, DAkkS-Kalibrierung?

Daten der Referenzgeräte und Messwerte der Kalibrierung, Kommentare und Laborbedingungen

Toleranzen vs. Regelbereiche

("operational fluctuations", aktuelles ISO-Projekt)

DIN EN 9022

Table 1 — Spectral energy distribution of the radiation source

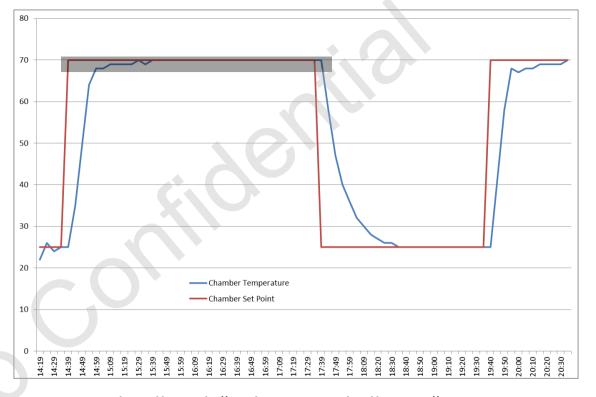
Toleranzbereiche

Regel-

bereiche


Spectral range		Ulti	raviolet		Visible		Infrared
Wavelength band	nm	280 to 320	beyond 320 to 400	beyond 400 to 520	beyond 520 to 640	beyond 640 to 780	beyond 780 to 3 000
Irradiance	W/m ²	5 ± 2	63 ± 15	200 ± 20	186 ± 20	174 ± 20	492 ± 100

DIN EN ISO 4892-2


Table 3 - Exposure cycles with temperature control by

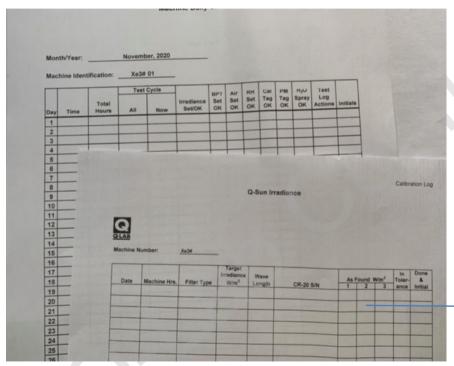
	Method	A — Exposures using daylight fi Irradianceb				
Cycle No.	Exposure period	Broadband (300 nm to 400 nm) W/m ²	Narrowband (340 nm) W/(m ² ·nm)			
1	102 min dry 18 min water spray	60 ± 2 60 ± 2	0,51 ± 0,02 0,51 ± 0,02			

+/- 3%

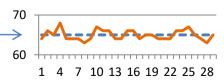
Rampen und Regelbereich

- Einige Standards fordern Rampen, z.B. "schneller als" oder "innerhalb von"
- Ziel ist der <u>Regelbereich</u>, optimalerweise ohne Überschießen
- Die Stripchart Software dient zur Überprüfung und Dokumentation gleichermaßen

Dokumentation


Dokumentation, Speicherung, Entsorgung

Papier ade: Eigentlich kann der Computer alles besser und schneller


Abheften oder lieber gleich wegschmeißen?

Tägliche Kontrollen, regelmäßige Arbeiten Tipps und Tricks

Tägliche Arbeiten und Kontrollen am Tester; aber viele Daten sind bereits in StripChart verfügbar:

Regelmäßige Arbeiten und Wartung am Computer dokumentieren (Laborleitung), Erinnerungen aus Outlook

Rund ums Kalibrieren:

- Kalibrieren ist wichtig, es erhöht die Verlässlichkeit
- Kalibrieren ist einfach und schnell
- Kalibrieren kann durch zusätzliche Maßnahmen ("interne Standards") unterstützt, aber nicht ersetzt werden.
- Das Kalibrierzertifikat enthält wertvolle Informationen
- Dokumentation erfolgt am besten papierlos am PC

Vielen Dank!

Fragen?