Correlation in Accelerated Testing Principles, Challenges, and Case Studies 户外和实验室加速测试的相关性 原理,挑战和案例分析


Kobe Qu (瞿华盛)

Senior Technical and Marketing Manager

kqu@q-lab.com

Q-Lab Corporation

<u>点击查看课程资料和视频回放。</u>

• In weathering and corrosion, we encounter the same basic question over and over again ...

在老化和腐蚀测试中,我们经常碰到这样的问题。。

 "How many hours in my accelerated test correlates to ___years of outdoor service?"

"加速测试多少小时等于户外多少年?"

The Hard Truth

 There is no Universal Acceleration Factor, or "Magic Number," between accelerated and outdoor testing

在加速和户外测试中,没有统一的加速因子或"神奇数字"

• Different materials in different service environments have different acceleration factors

不同的材料在不同的使用环境下有不同的加速因子

• Weathering and Corrosion Tests do not give quantitative predictions of Service Life

老化和腐蚀测试不能定量地给出产品的寿命预测

We make testing simple

Why is this such a challenge?

- The problem is not that we just haven't developed the perfect weathering tester yet. 问题不是我们没有开发很好的老化测试
- The biggest problem is the inherent variability and complexity of outdoor exposures. Consider just some of the many factors in relationships between outdoor and accelerated tests:

最大的问题是户外曝晒的多变性和复杂性。考虑所有的户外和加速试验关系的因素:

Outdoor factors 户外因素

- 1. Latitude 维**度**
- 2. Altitude 海拔
- 3. Geography 地理环境
- 4. Year-to-year variations 每年的气候变化
- 5. Seasonal variations 季节性变化
- 6. Specimen Orientation 样品的朝向
- 7. Environmental particulates 环境污染

Laboratory factors 实验室因素

- 8. Specimen insulation 样品的散热绝缘
- 9. Test cycle 测试循环
- 10. Water delivery 水施加
- 11. Test temperatures 测试温度
- 12. Light source 光谱差异

And of course ...

13. The particular materials system tested 样品自身特性

What Can Be Done


- Weathering and corrosion testing can have many goals other than determining acceleration factors and service life.
- 老化和腐蚀测试有很多的目的不仅仅是得到加速因子和寿命预测
- Define goals, set expectations, and from there select an appropriate test program 根据测试目的和预期 · 选择合适的测试项目
- Although weathering and corrosion tests usually are not predictive, they can often be correlative
- 尽管老化和腐蚀测试通常不能做寿命预测,他们可以做相关性研究
- Weathering and corrosion tests are comparative, and comparative data can be powerful. 老化和腐蚀测试是相对的,相对数据是很有用的

Accelerated Testing is a Tool for Decision Making

Accelerated tests can help you decide ... 加速测试可以帮助你。。

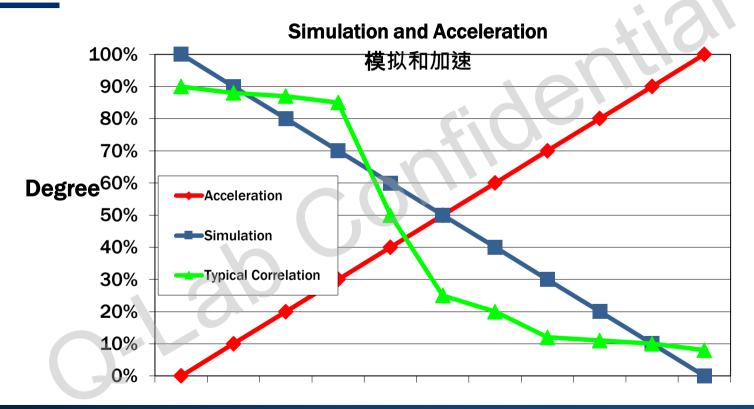
- What ingredients to include or not include in a product 在产品中是否添加某些成分
- Whether a lot or batch is OK to ship to customers
- 产品批次的检验
- What vendors to buy from
- 供应商的筛选
- What processing and manufacturing parameters should be selected 在生产过程中需要选择或者调整什么参数
- Make better, faster decisions

做更好更快的判断

Accelerated Test Types

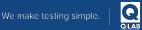
What do we want to learn?

Accelerated Test Type 加速测试目的	Result 结果	Test Time 测试时间	Results compared to 结果和什么比	
Quality Control 质量控制	Pass / fail 合格/不合格	DefinedShort	Material specification 产品规格	
Qualification / validation 验证	Pass / fail 合格/不合格	DefinedMedium-long	Reference material or specification 参比材料或 规格	
Correlative 相关性	Rank-ordered data 排序数据	 Open-ended Medium	Natural exposure (Benchmark site) 自然曝晒 (户外基准点)	
Predictive 寿命 预测	Service life Acceleration factor 加速因子	 Open-ended Long	Natural exposure (Service environment) 自然曝晒(使用 环境)	


Accelerated Test Types

What do we want to learn?

Accelerated Test Type	Result	Test Time	Results compared to	
Quality Control	Pass / fail	DefinedShort	Material specification	
Qualification / validation	ation / validation Pass / fail • Defined • Medium-long		Reference material or specification	
Correlative	Rank-ordered data	 Open-ended Medium	Natural exposure (Benchmark site)	
Predictive	Service life Acceleration factor	 Open-ended Long 	Natural exposure (Service environment)	


Why is correlation such a challenge?

The degree to which sets of data from separate tests agree with one another

- 一个测试与另外一个测试之间多大程度的关联
 - Accelerated vs outdoor weathering
 加速方法vs户外
 - One accelerated test method vs another
 加速方法a vs 加速方法b
 - One outdoor environment vs another 户外a vs 户外b

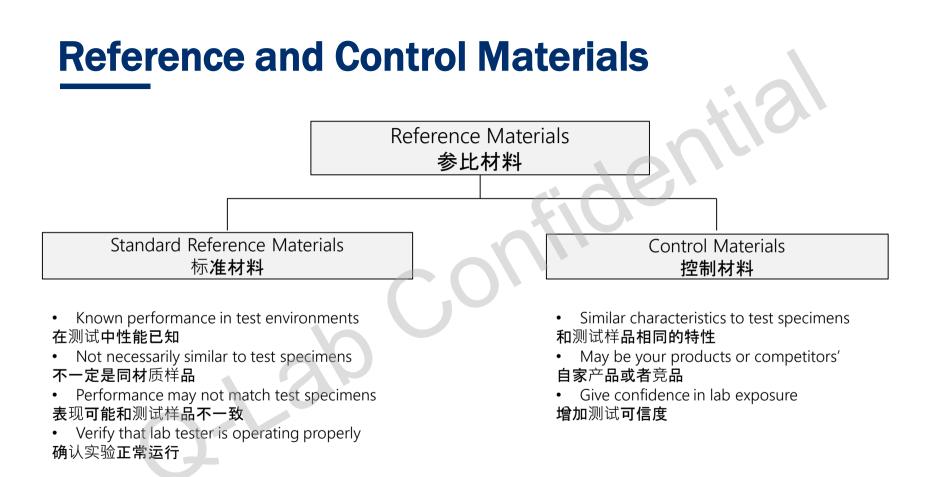
Why Correlation Matters

- Decision-making tools need to be validated 决策工具需要被证实
- There is an inherent conflict between acceleration and realism 在加速和现实中固有的矛盾
- The only way to validate an accelerated weathering test is with outdoor/real world data
- 唯一的方法去证实加速测试有效的是户外数据
- In other words ... Test the Test!

换句话说,测试本身需要被测试!

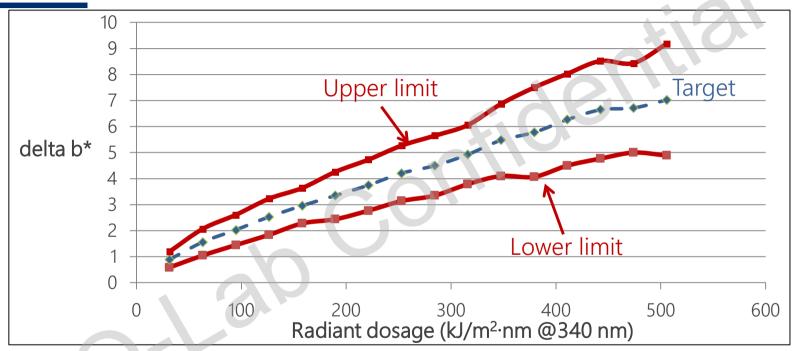
Methods for Establishing Correlation

Two main methods for correlating two tests (usually outdoor and accelerated)


将两个测试(通常是户外和实验室加速测试)关联起来的方法

Reference and Control Materials

参比材料


Rank Order Evaluation

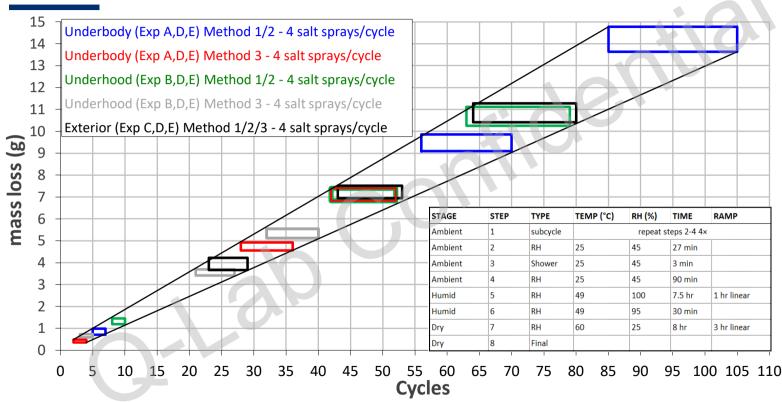
Standard Reference Material (Polystyrene)

Reference Polystyrene yellowing validates tester performance in SAE J2527 PS参比样板确保SAE J2527运行有效

Corrosion Coupons

Standardized metal specimens

标准金属材质

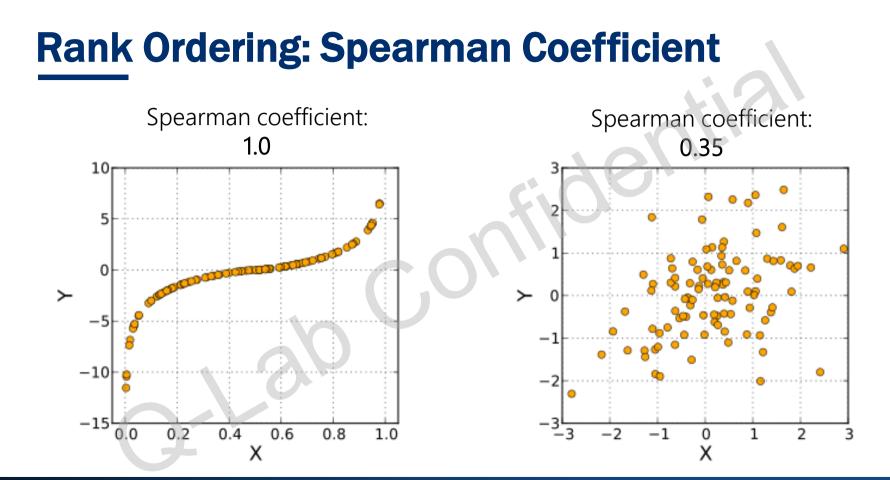

- Mass loss due to corrosion is measured during a test
 在测试中测量腐蚀后的失重
- GMW 14872 requires a specific rate of mass loss throughout a test

GMW 14872要求在测试中的失重曲线

• Ensures corrosion chamber is maintaining proper conditions and operator is running the test correctly

确保盐雾箱维护正常, 运行正常

Mass Loss Tolerances in GMW 14872



Control Material Guidelines

- Control materials must have known durability. This can be from: 了解控制样的性能
 - Outdoor performance
 - 户外表现
 - Lab performance
 实验室表现
 - A combination of these
- Similar composition to test material 和测试材料相似的成分
- Similar expected degradation mode to test material 和测试材料类似的老化模式
- Best practice to include both weak- and strong-performing control materials 测试中需要耐候性好和差的控制样

Rank Order Correlation

- Rank materials from best to worst outdoors and in lab test 户外和实验室数据从好到差对样品进行排序
- Calculate correlation coefficient using Spearman's Rank Correlation Coefficient
 使用斯皮尔曼相关系数计算
 - Quantitative measure of how well the lab test matches outdoors 定量计算出实验室数据和户外的匹配度
 - Correlation of 1 is perfect (so is -1, in a way) 相关系数1最好 (-1是最差)
 - Correlation of 0 is random
 - 相关系数0为没有相关性

Rank Order Correlation Benefits

- Determines or confirm relationship between different exposure techniques 确认不同测试曝晒数据之间的关系
- Develops confidence in realism of lab techniques
- 增加实验室测试的可信度
- Provides a basis for directional decision-making in research and development
- 在研发过程中提供判断的基准依据

Why not Pearson's Product-Moment Correlation?

• Pearson's compares two variables for fit (e.g. exposure length and degradation)

皮尔森比较两组变量是否匹配 (比如曝晒时间和老化)

- Since most degradation mechanisms are non-linear, Pearson's coefficient is usually poor
- 老化是非线性变化,皮尔森系数通常比较差
- May still be useful in reformulation, once a test is verified with Rank Order Correlation!

排序相关计算之后皮尔森系数可能有效

Perfect Correlation

Perfect correlation between Accelerated and Outdoor performance is rarely observed 加速试验和户外之间完美的相关性是几乎不存在的

Correlation Case Study #1

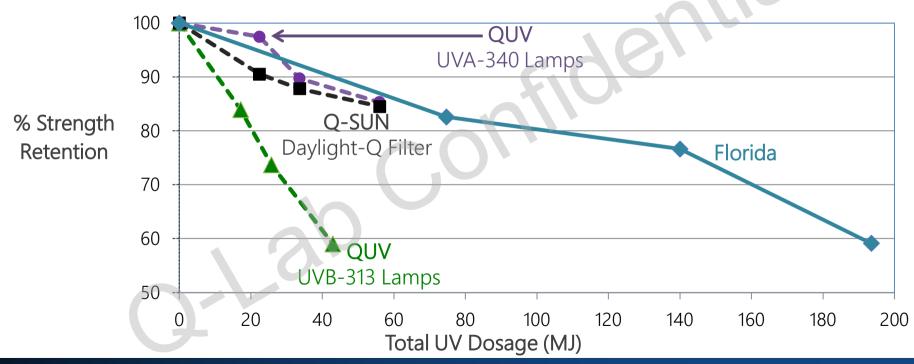
Flexible Intermediate Bulk Containers (FIBC) 柔性集装袋

Flexible Intermediate Bulk Containers (FIBC)

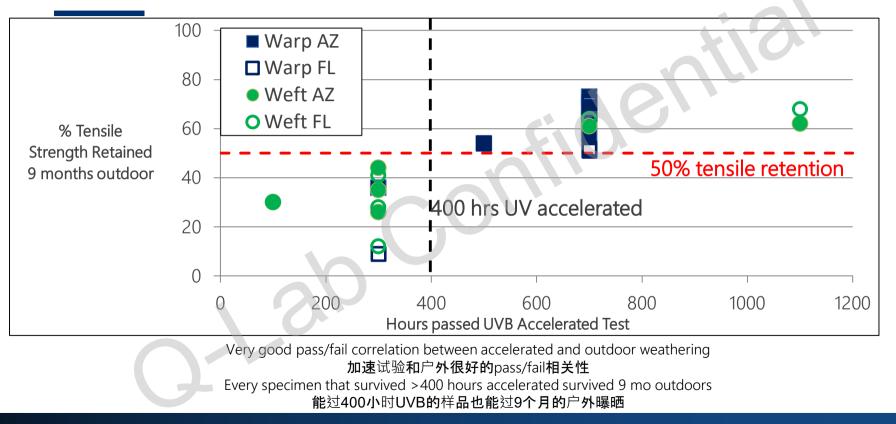
Situation

 FIBCs are used to carry goods. They need to survive at a job site for up to 12 months without losing tensile strength.

集装袋用来吊装货物。这些袋子需要连续使用 12个月并且保证拉伸强度不损失


 Various test methods with Xenon and Fluorescent UV were compared to outdoor performance.

各种氙灯和紫外的测试与户外的表现相比较



FIBC Correlative Testing

Accelerated and Outdoor testing – Radiant Dosage 辐照量

FIBC results: Outdoor/Accelerated Correlation

FIBC Correlation Conclusions

• Xenon arc and fluorescent accelerated testing both provided good correlation to outdoor evaluation

氙灯和紫外加速测试都提供了和户外好的相关性

• Realistic light sources (UVA fluorescent, Daylight filtered xenon arc) gave strength retention results that can be correlated to outdoor exposure on a radiant dosage basis

模拟性好的光源(UVA,氙灯使用日光过滤片),在同样的辐照量水平下,和户外的相关性较 好

- Acceleration factor ~7: >250 hours xenon testing correlated to 2.5 months in Florida
 加速因子~7: 250小时以上的氙灯测试和佛罗里达2.5个月相关性较好
- Pass/fail behavior of FIBC over 6-9 months predicted well by UVB-313 fluorescent test UVB313方法可以很好预测6-9个月的集装袋pass和fail的情况
 - Acceleration factor ~16: >400 hours lab testing correlated to 9 months outdoors. Pass/fail testing can
 often be faster!

加速因子~16:大于400小时的UVB和9个月的户外相关性较好. Pass/fail测试可以很快

Correlation Case Study #2:

Artists' Colored Pencils 彩色铅笔

Colored Pencils Correlation Study

Background

- There was no standard to distinguish colored pencils' light stability 没有标准来区分彩色铅笔的耐光稳定性

Objective

- Develop standard and determine correlation between natural and accelerated exposures
- 建立标准·研究自然和加速试验的相关性
- Property measured is delta E total color change
 评估指标为色差

Colored Pencils Correlation Study

Xenon accelerated test data

Color	delta E	Color	delta E	Color	delta E
Red-1	5.7	Yellow	45.6	Blue-1	10.9
Red-1	5.7	Yellow	45.9	Blue-1	11.2
Red-2	26.7	Green-1	6.1	Blue-2	26.8
Red-2	28.5	Green-1	7.0	Blue-2	28.2
Orange-1	79.7	Green-2	5.8	Purple-1	23.0
Orange-1	79.3	Green-2	7.9	Purple-1	22.3
Orange-2	34.8	Green-3	19.3	Purple-2	23.1
Orange-2	34.8	Green-3	19.9	Purple-2	22.9
Beige	19.7	Aqua	5.8	Black	2.7
Beige	19.7	Aqua	5.7	Black	2.1

15 materials – a minimum of 10 (better if 20!) needed for correlation 15种材料 – 最少10种(20种更好)用来做相关性研究

Colored Pencil Correlation Study

Comparison of accelerated to outdoor

	Arizona Under Glass		Florida Under Glass		Xenon	
Specimen	ΔE	Rank	ΔE	Rank	ΔE	Rank
Red Pigment A	10.9	1	1.3	1	5.7	1
Red Pigment B	45.8	2	36.6	2	27.6	2
Orange Pigment	79.9	3	80.4	3	79.5	3

Results - Rank Order Correlation

Test Rankings Being Compared	Spearman's Rank Coefficient
Arizona – Florida	0.94
Xenon – Arizona	0.95
Xenon – Florida	0.93

Excellent rank order correlation between natural and accelerated exposure results of all of the specimens

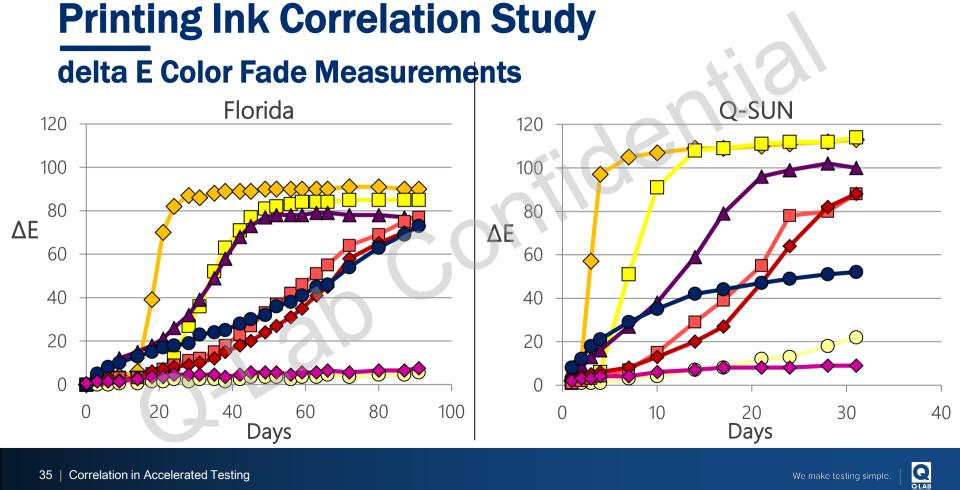
所有样品都体现了自然和实验室很好的相关性

Correlation Case Study #3:

Lithographic Inks 平板印刷油墨

Printing Ink Correlative Study

Purpose


Evaluate the light stability of lithographic inks
 评估平板印刷油墨的光稳定性

Test Program

- Natural outdoor tests
- 自然曝晒
- Q-SUN Xenon Arc tests 氙灯测试

Printing Ink Correlation Study

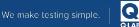
Conclusions

- Excellent rank order correlation between outdoor & lab results
 实验室和户外很好的相关性
- Test technique can be applied to any ink, ink/substrate combination
 测试方法可以引申到其他油墨或者成品
- Acceleration factor ~3.5 for these materials under these test conditions
 加速因子~3.5 (对于这些材料在这样的测试条件下)

Correlation Case Study #4:

Colored Plastics 塑料片

Colored Plastics Correlation Study


Situation

- Inorganic color additives in plastics like PVC are increasingly being replaced by organic additives. PVC中有机颜料替代无机颜料
- Better safety, decreased lightfastness performance.
- 安全性更好但是耐候性下降
- Need to understand better outdoor light / colorfasteness
 需要理解户外日晒环境

Test Program

- Accelerated weathering testing of colored PVC plastics performed, color change (ΔE) measured PVC材料实验室加速测试,评估delta E
- Outdoor exposures for 2 months (Florida)
 佛罗里达户外曝晒2个月
- Accelerated lab for 200 hours (UV fluorescent and xenon arc) 紫外和氙灯加速测试各200小时

PVC Weathering Test Program

- Outdoor Exposures 户外曝晒
 - Florida
 - Unbacked specimens, 45° south facing
 - 57 days
- Fluorescent UV 荧光紫外
 - UVA-340 and UVB-313 lamps
 - 4h light, 0.72 W/m²/nm, 45 °C
 - 4h condensation, 40 °C
 - 200 hours
- Xenon arc 氙弧灯
 - Daylight-Q and Extended UV-Q/B filters
 - 5h light, 0.68 W/m²/nm, 35-45 °C
 - 20 min spray, 40 °C
 - 200 hours

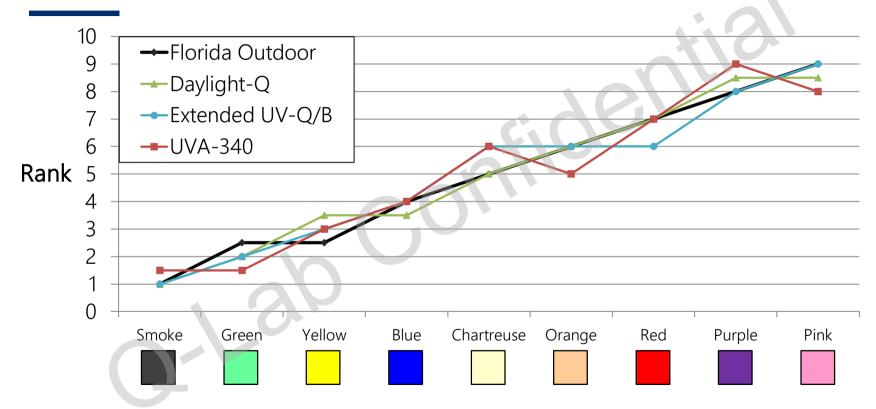
QLAB

Results

Green

Results

Purple


Correlation: Accelerated vs Outdoor

	Florida Outdoor		Daylight		Extended UV		UVA-340		UVB-313	
Color	ΔE	Rank	ΔE	Rank	ΔΕ	Rank	ΔΕ	Rank	ΔΕ	Rank
Smoke	0.6	1	1.0	1	1.8	1	1.3	1	3.6	1
Green	2.0	2.5	2.0	2	5.6	2	1.8	1	16.7	3.5
Yellow	2.5	2.5	5.0	3.5	6.3	3	4.7	3	43.0	7
Blue	4.7	4	5.2	3.5	7.2	4	5.7	4	21.0	5
Chartreuse	5.6	5	7.7	5	11.0	6	11.9	6	25.5	6
Orange	8.6	6	11.2	6	11.4	6	10.2	5	17.7	3.5
Red	14.0	7	35.0	7	11.8	6	16.8	7	14.3	2
Purple	39.0	8	42.0	8.5	40.7	8	26.6	9	50.7	8.5
Pink	71.9	9	41.3	8.5	65.3	9	19.7	8	49.7	8.5
Rank order correlation with Outdoors>			0.98		0.96		0.95		0.54	

Excellent color change correlation between FL outdoors and accelerated (except UVB-313)

QLAE

Rank Order Correlation: Accelerated vs Outdoor



43 | Correlation in Accelerated Testing

QLAB

Conclusions

- Correlation for color change between accelerated and outdoor tests 加速实验和户外颜色变化的相关性
 - Excellent rank order correlation for xenon (Daylight or Extended UV filter) and UV fluorescent (UVA-340 lamps) 氙灯(日光或紫外延展过滤器)和荧光紫外(UVA-340灯管)和户外很好的相关性
 - Acceleration factor for 57 days outdoor and 200 h accelerated (7:1)
 57天户外: 200小时实验室加速 = 7:1
 - Poor correlation for UV fluorescent UVB-313 lamps
 UVB313方法和户外相关性较差
- Different degradation observed for pigments and base plastics 颜料和底材出现不同的老化
 - Darkening from plastic yellowing from shortwave UV 塑料基材在短波紫外光下黄变变暗
 - Fade from breakdown of pigments from visible light 颜料在可见光下分解褪色
 - Differences most pronounced for pink and red specimens
 粉色和红色样品差异最显著
 - Illustrates the need for thorough color characterization beyond ΔE 除ΔE之外进行全面颜色表征分析的必要性

Correlation Case Study #5:

Vinyl Siding 乙烯基壁板

What is Vinyl Siding?

- Co-extruded building cladding material 共挤建筑覆层材料
 - Manufactured mostly from Polyvinyl Chloride (PVC) 大部分是PVC材质
 - Top layer (capstock) is durable and UV-stabilized 最上层很耐候,抗紫外
 - Also known as uPVC Weatherboarding in some regions
 - 在一些地区也叫做uPVC耐候板
- Developed in the 1960's, became popular in the 1970's 1960年开发, 70年代流行
- Most common residential exterior cladding material in US & Canada – about 20 million m² used per year
 北美最常用的住所外包覆材料-每年2千万m2的用量

Vinyl Siding Institute

Outdoor test program

- Large-scale, long-term study
- 大量的,长时间的研究
- Outdoor data collection ongoing since 1984 1984年以来一直收集户外数据
- New tests started every 5 years; thousands of specimens and replicates tested

新的测试每5年开始·数以千计的样品被测试

• Long-term material degradation mechanisms are now well understood

长期材料老化机制被很好地掌握

Correlation here is between short- and long-term outdoor testing 这里的相关性研究对象是短期和长期户外测试

We make testing simple.

Vinyl Siding Institute

Service Life Certification

- Accurate service life estimate based on 2-year outdoor testing 正确的寿命预测建立在2年的户外曝晒
 - If after 2 years of exposure, color change is <1, then after 25 years it has a high probability of color change <4 如果2年曝晒后, 色差小于1, 那么25年之后很可能色差小于4
 - Acceleration for service life prediction of 12:1 加速比例为12:1
- 2 year outdoor certification program 2年的户外认证项目
 - Administered by ISO 17025-accredited, independent 3rd party 有ISO 17025认证的第三方操作
 - Exposures in FL, AZ, OH
 - 在FL,AZ,OH曝晒
 - Tests performed in accordance with ASTM test standards 实验室做ASTM标准
 - Receive a VSI stamp, gives credibility to a 25-year warranty 接受一个VSI章-保证25年的寿命

Qualification / Correlation Case Study

Vinyl Siding Institute (VSI)

- New Goal: Correlate accelerated test to 2-year outdoor results 新目标:实验室加速和2年户外数据相关性
 - Six rounds of accelerated testing conducted by multiple labs examined test cycles of both UV fluorescent and xenon
 六轮实验室测试- 紫外和氙灯
- Unique Fluorescent UV cycle provided best correlation for PVC siding material 荧光紫外测试提供了最好的相关性对于PVC材料
 - Hot condensation best for accelerating realistic moisture attack synergistically with UV 热冷凝伴随紫外光照是最好地对材料进行潮湿侵袭
 - Long wave and visible had little impact 长波段和可见光影响很小
 - Reduced UV temps and increase condensation temps gave better results
 降低紫外光照时的温度,升高冷凝温度可以得到更好的结果
- UV fluorescent test not adopted for certification program, but used by members for product development 荧光紫外测试不被认证,但是PVC行业用紫外方法做材料的开发

Summary of Correlative Testing

Accelerated Test Types

Accelerated Test Type	Result	Test Time	Results compared to	
Quality Control	Pass / fail	DefinedShort	Material specification	
Qualification / validation	Pass / fail	DefinedMedium-long	Reference material or specification	
Correlative	Rank-ordered data	 Open-ended Medium	Natural exposure (Benchmark site)	
Predictive	Service life Acceleration factor	 Open-ended Long 	Natural exposure (Service environment)	

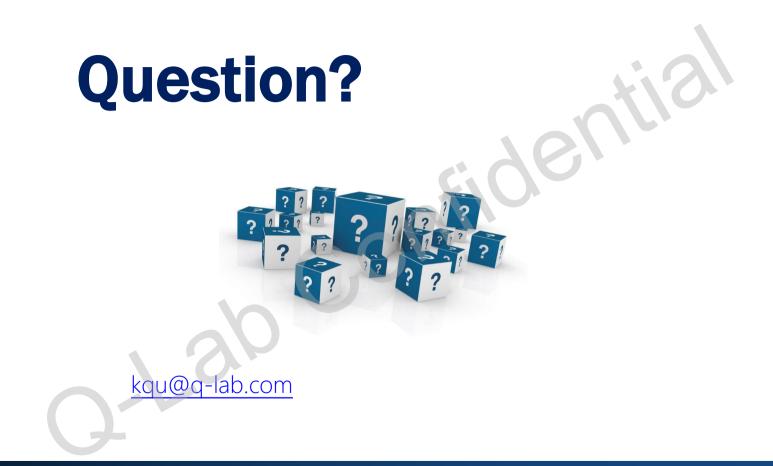
What did we learn from those correlation case studies?

All of the acceleration factors were different! They are not general or universal and they depend on:

没有统一的加速因子,因为以下:

- The specific material tested
 具体的材料特性
- The type of test being correlated to natural outdoor results fluorescent UV, xenon, accelerated outdoors
- 实验室的测试方法-荧光紫外、氙灯、户外加速
- The specific set of lab tester time cycles and temperature 测试循环和温度
- The specific outdoor exposure site and sample mounting procedure 具体的户外曝晒地点和样品安装
- The failure mechanism(s) being evaluated 失效模式

Correlation between accelerated and outdoor testing


Correlation between outdoor and accelerated testing can be determined for a variety of materials systems. However...

实验室加速测试和户外的相关性由不同的材料特性决定,然而。。

- Acceleration factors are not general and often only valid for one type of degradation 加速因子不是唯一的而且通常只适用于一种失效模式

- Comparative testing usually gives rank-ordered data, which can be powerful data 排序数据很有用

It is critical to perform outdoor testing to validate accelerated testing - "Test the Test"
 户外测试很重要,用来验证实验室加速测试

QLAB

Q-Lab中国微信公众账号: 耐候腐蚀设备及测试专家

- ✔ 技术研讨会、网络研讨会信息
- ✔ 老化及腐蚀技术文章、最新测试标准解读等
- ✓ 相关技术问题,也可通过平台留言,我们会在24小时内和您联系

