Korrelation bei beschleunigten Labortests

Grundlagen, Herausforderungen, Fallstudien

Dr. Andreas Giehl – European Technical and Standards Director

Joachim Neu – Senior Sales Manager

Christiaen Kors – Sales Manager

Q-Lab Corporation

Aufzeichnung abrufen

Ein paar Anmerkungen vorweg ...

Sie erhalten in Kürze eine Email von

info@email.q-lab.com

mit den weiterführenden Links zu einer Umfrage, Anmeldung zu den weiteren Webinaren, und zum Download Bereich

- Diese Webinar Serie ist abrufbar unter: q-lab.com/webinarseries
- Unsere archivierten Webinare finden Sie: q-lab.com/webinars
- Bitte benutzen Sie die **F&A Funktion in Zoom** für Ihre heutigen Fragen!

Die Mutter aller Fragen:

Bei Laborprüfungen hören wir immer wieder......

"Wie viele Stunden muß ich testen, um xx Jahre im Freien zu garantieren?"

Die harte Wahrheit:

Es gibt keinen universellen Beschleunigungsfaktor, keine "Magic Number," zwischen Labor und realer Umgebung

- Jedes Material hat in einer bestimmten Umgebung einen anderen Beschleunigungsfaktor
- Laborbewitterungs und Korrosionsprüfungen sind nicht als Vorhersage ausgelegt.

Warum ist das so schwer?

- Das Problem ist nicht, daß es den perfekten Testapparat nicht geben würde.
- Das größte Problem ist die Variabilität und Komplexität der realen Umgebung, z.B. (unvollständige Auswahl):

Einflüsse im Freien

- Breitengrad
- 2. Höhe
- 3. Geographie
- 4. Variationen zwischen den Jahren
- 5. Variationen innerhalb eines Jahres
- 6. Orientierung der Prüflinge
- 7. Spezielle Besonderheiten des Standortes

Labor Faktoren

- 8. Thermische Isolierung des Prüflings
- 9. Testzyklus
- 10. Wasser (Feuchte, Regen, Kondensation)
- 11. Test Temperaturen
- 12. Lichtquelle

Und ganz besonders...

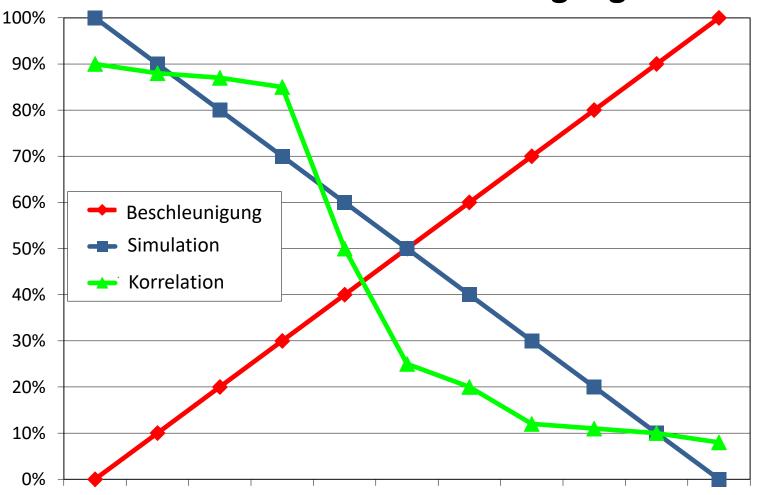
13. Die spezifischen Materialeigenschaften

Was kann getan werden:

- Bewitterungsprüfungen kann auch ganz andere Ziele haben als Vorhersagen und Beschleunigungsfaktor.
- Definieren Sie wichtige Materialeigenschaften und legen Sie ein geeignetes Testprogramm fest
- Obwohl viele Tests nicht als **Vorhersage** geeignet sind, können sie die Ergebnisse **vergleichen**
- Bewitterungs- und Korrosionstests sind Vergleichsprüfungen und Vergleichsdaten sind wertvoll.

Labortests sind ein Werkzeug für die Entscheidungsfindung

Beschleunigte Laborprüfungen können helfen ...


- Welche Additive braucht mein Produkt, welche nicht?
- Ausgangskontrolle vor dem Versenden zum Kunden
- Eingangskontrolle, Auswahl des besten Lieferanten
- Welche Prozess- und Verarbeitungsschritte müssen eingehalten/vermieden werden
- Bessere und schnellere Entscheidungen machen

Welche Prüfungen soll ich durchführen? Was will ich wissen?

Schnellbewitterung sprüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit	
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen	
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation	
Korrelationsprüfung	nach Rang gewichtete Daten	unbegrenztmittel	natürliche Freibewitterung (Referenzstandort)	
Prognose	Lebensdauer Beschleunigungsfakt or	unbegrenztlang	natürliche Freibewitterung (Einsatzumgebung)	

Warum ist Korrelation so schwer?

Simulation vs. Beschleunigung

Korrelation

Ist das Maß dafür, wie gut Daten von verschiedenen Tests und Prüfungen miteinander übereinstimmen

- Beschl. Laborprüfung vs. Freibewitterung
- Beschl. Labortests untereinander
- Freibewitterungen untereinander

Warum ist Korrelation so wichtig?

- Das Werkzeug zur Entscheidungsfindung muss validiert werden (immer wieder neu!)
- Es gibt einen inhärenten Konflikt zwischen Beschleunigung und Realitätstreue
- Der einzige Weg für eine Validierung ist der Vergleich mit realen Daten oder einer Freibewitterung. Teste den Test!

Methoden für die Festlegung der gewünschten Korrelation

Zwei bewährte Wege, um Ergbnisse aus zwei Prüfungen zu korrelieren (üblicherweise Labor-und Freibewitterung)

Referenz- und Kontrollmaterialien

Reihenfolge evaluieren (Rank Order)

Referenz- und Kontrollmaterialien

Referenz Materialien

Standard Referenz Materialien

- Bekannte Eigenschaften im Testumfeld
- Nicht unbedingt ähnlich zum Prüfling
- Eigenschaften können sehr unterschiedlich sein gegenüber dem Prüfling

=> Gute Verifizierung des Testers


Kontroll-Materialien

- Ähnlich wie der Prüfling
- Ggf. Ein Wettbewerberprodukt

=> Gibt Vertrauen in die Laborabläufe

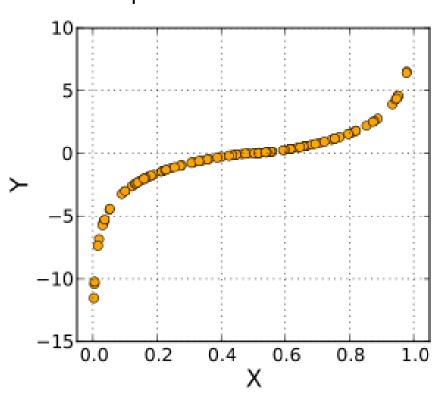
Standard Referenz Material

Polystyrolchip (PS) – Vergilben nach SAE J2527

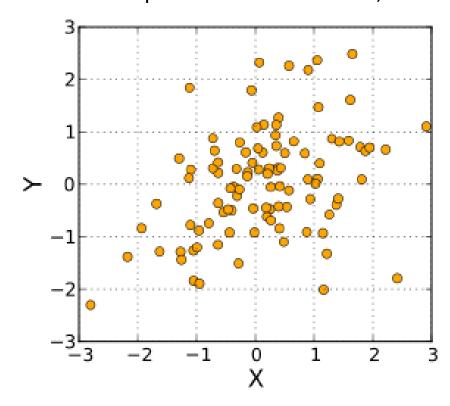
Der Referenz PS-Chip validiert die Leistungsfähigkeit des Testers

Was eignet sich zur Kontrolle?

- Die Eigenschaft der Kontrolle muß bekannt sein
 - Für die Freibewitterung
 - beim Labortest
- Ähnlicher physischer Aufbau wie das Testmaterial
- Ähnlicher Abbauweg wie das Testmaterial
- Gute Laborpraxis: Starkes und schwaches Vergleichsmaterial mittesten


Rangfolge festlegen

- Reihenfolge vom Besten zum Schlechtesten Muster für Labor und Freibewitterung
- Korrelationskoeffizient berechnen, z.B. nach der Spearman Methode
 - Quantitative Aussage, wie gut Labor und Freibewitterung zusammenpassen
 - Korrelationfaktor "1" ist perfekt, "-1" wäre eine perfekte, aber umgekehrte Reihenfolge


Wie funktioniert die Rangfolge?

Spearman Koeffizienz

Spearman Koeffizient = 1.0

Spearman Koeffizient = 0,35

Aussagen aus der Reihenfolge:

- Belegt oder bestätigt eine Vergleichbarkeit zwischen zwei Testmethoden.
- Erzeugt Vertrauen in die Realitätstreue einer Laborprüftechnik
- Liefert eine fundierte Grundlage für eine (langfristige) Richtungsentscheidung für F&E

Warum nicht die Pearson Methode?

- Pearson vergleicht jeweils 2 Werte (z.B. Exposition gegen Abbau)
- Die meisten Abbaumechanismen sind nicht linear und der Pearson Faktor daher of schlecht
- Die Pearson Methode kann aber wertvoll sein, ein Produkt zu verbessern, nachdem der Test (z.B. mit der Reihenfolge) validiert ist!

Perfekte Korrelation

Perfekte Korrelation zwischen Labor und Realität ist eher die Ausnahme als die Regel

Korrelation Fall Studie #1:

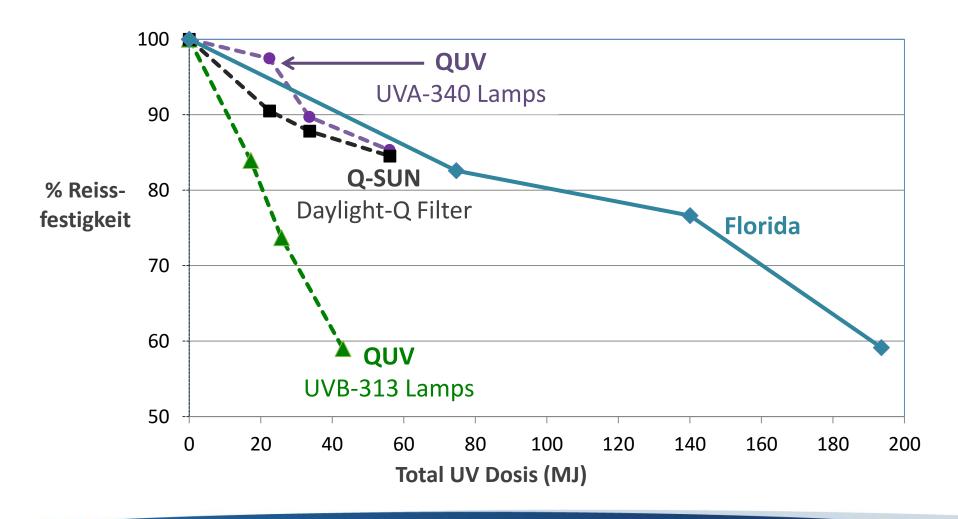
Flexible Bulk Intermediate Containers (FIBC)

Flexible Transport Behälter (FIBC)

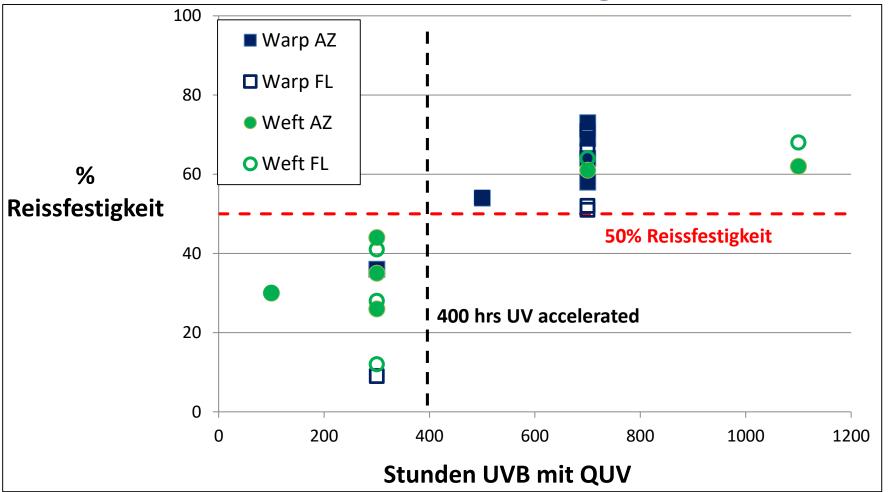
Situation

Die flexiblen Transportsäcke sind für 12 Monate harten Einsatz ausgelegt und dürfen dabei 50% der Reissfestigkeit nicht unterschreiten.

Verschiedene Testmethoden mit Xenon und UV wurden gegen Freiversuche in Florida und Arizona verglichen



We make testing simple.


22

FIBC Korrelation

Labor vs. Freibewitterung nach Dosis

FIBC: Labor/Freibewitterung Korrelation

Sehr gute Übereinstimmung (kein falsch/positiv), all Muster in weniger als 9 Monaten Im Freien bestehen auch 400hrs Test mit UVB

FIBC Korrelation Zusammenfassung:

- Xenon und UV geben <u>beide</u> eine gute Übereinstimmung mit den Freibewitterungsergebnissen
- Realitätsnahe Lampen (UVA, Xenonbogen mit Tageslichtfilter) ergeben Reissfestigkeitswerte, die mit der Freibewitterungs auf Basis der **Dosis** korreliert
 - Beschleunigungsfaktor ~7: 250 Stunden Xenon Test entsprechen 2.5 Monaten in Florida.
- Qualitätskontrolle (pass/fail) kann sehr gut mit UVB-313 Lampen vorausgesagt werden.
 - Beschleunigungsfaktor ~16: 400 Stunden UVB entsprechen
 9 Monaten im Freien. =>Einfache Qualitätstests "Pass/Fail" sind oftmals viel schneller!

Korrelation Fall Studie #2:

Farbige Künstler Zeichenstifte

Farbstifte Korrelation Studie:

Hintergrund

 Es gibt keinen einheitlichen, aussagekräftigen Test für die Lichtechtheit von Zeichenstiften

Ziel

- Einen Prüfstandard entwickeln und die Korrelation zum natürlichen Ausbleichen bestimmen.
- Prüfgröße ist Delta E Gesamtfarbabstand

Farbstifte Korrelation Studie: Xenonbogen Test Daten

Color	delta E	Color	delta E	Color	delta E
Red-1	5.7	Yellow	45.6	Blue-1	10.9
Red-1	5.7	Yellow	45.9	Blue-1	11.2
Red-2	26.7	Green-1	6.1	Blue-2	26.8
Red-2	28.5	Green-1	7.0	Blue-2	28.2
Orange-1	79.7	Green-2	5.8	Purple-1	23.0
Orange-1	79.3	Green-2	7.9	Purple-1	22.3
Orange-2	34.8	Green-3	19.3	Purple-2	23.1
Orange-2	34.8	Green-3	19.9	Purple-2	22.9
Beige	19.7	Aqua	5.8	Black	2.7
Beige	19.7	Aqua	5.7	Black	2.1

15 Materialien getestet – mindestens 10 (besser 20 oder mehr) sind für eine gute Korrelationsstudie nötig

Farbstifte Korrelation Studie:

Vergleich mit der Freibewitterung

	Arizona (unter Glas)		Florida (unter Glas)		Xenon	
Muster	ΔΕ	Rank	ΔΕ	Rank	ΔΕ	Rank
Red Pigment A	10.9	1	1.3	1	5.7	1
Red Pigment B	45.8	2	36.6	2	27.6	2
Orange Pigment	79.9	3	80.4	3	79.5	3

(Hier nur exemplarische Auswahl der erste 3 Farben)

Berechnung der Reihenfolge

Vergleich der Prüfungen	Spearman Koeffizient		
Arizona – Florida	0.94		
Xenon – Arizona	0.95		
Xenon – Florida	0.93		

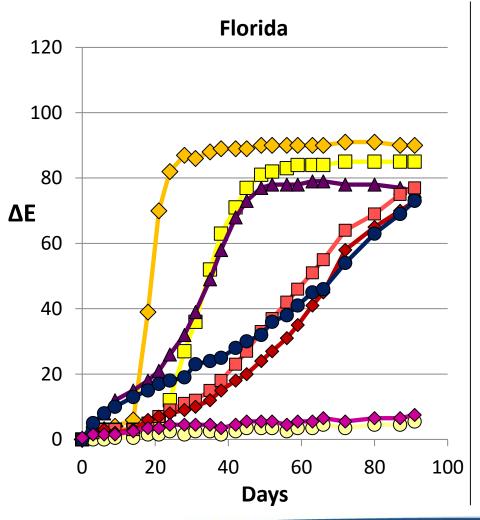
Sehr gute Übereinstimmung der Reihenfolge aller Muster und entsprechend hoher Koeffizient

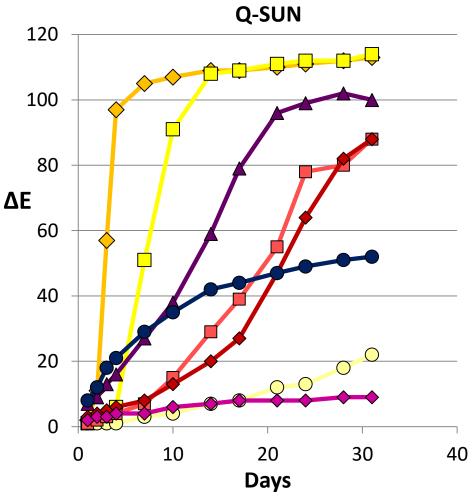
Korrelation Fallstudie #3:

Lithographische Tinten

Korrelationsstudie Druckfarben

Zweck

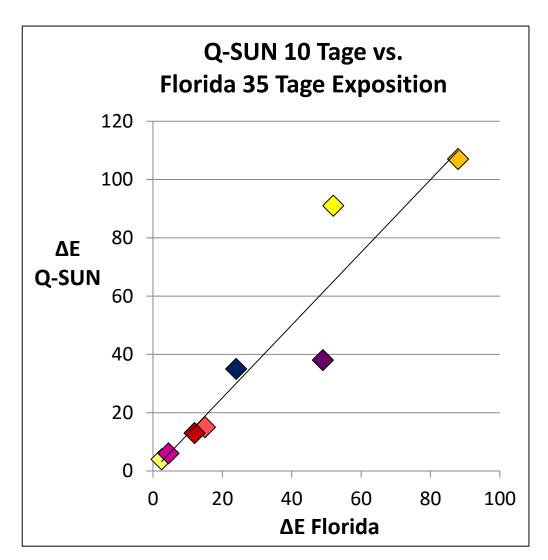

Bestimmung der Lichtechtheit von Druckerzeugnissen


Testprogramm

- Freibewitterung
- Q-SUN Xenonbogentest

Korrelationsstudie 8 Druckfarben

Delta E - Farbmessung



Korrelationsstudie Druckfarben

Zusammenfassung

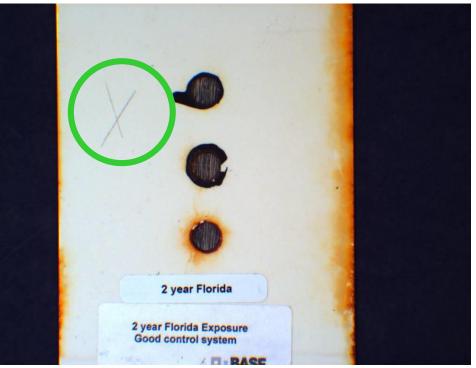
- Exzellente
 Übereinstimmung der
 Reihenfolge
- Der Test kann so auf jede andere Farbe/Substrat -Kombination angewendet werden
- Beschleunigungsfaktor ~3.5
 (für diese Materialart und diese Test Bedingungen)

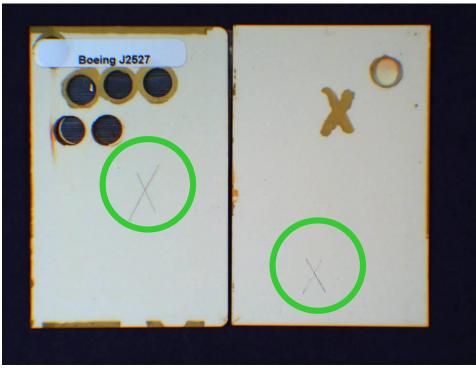
Korrelation Fallstudie #4:

Automobile Lacke, getestet nach ASTM D7869

Lacke von Transportfahrzeugen Korrelationsstudie

Situation

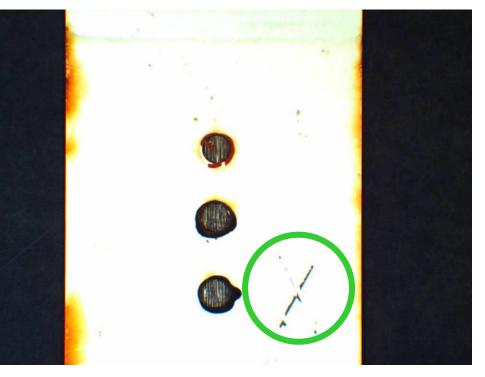

- Gebräuchlichster Laborschnelltest, SAE J2527, reproduziert nicht alle wesentlichen Außenergebnisse. Schwache Korrelation!
- ASTM D7869 wurde mit dem Ziel entwickelt, eine deutlich verbesserte Korrelation mehrerer Verwitterungsbilder zu liefern
- Realistischerer Einsatz von Licht, Hitze und Wasser

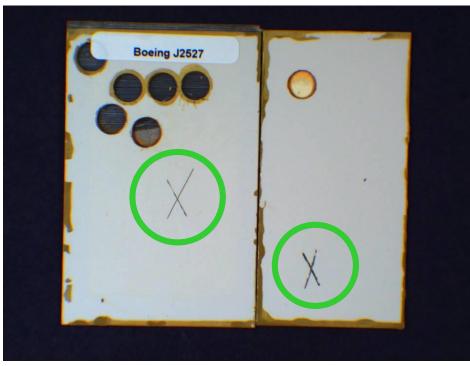

Test Programm

- Mehr als 100 Auto- und Flugzeuglacke wurden für 2 Jahre im Freien geprüft (~16000 h)
- Komplexer Labortest wurde entwickelt und läuft für 3000 kJ (~1800 hours ASTM D7869, ~2300 hours SAE J2527

Korrelation I: Das Kontrollmaterial

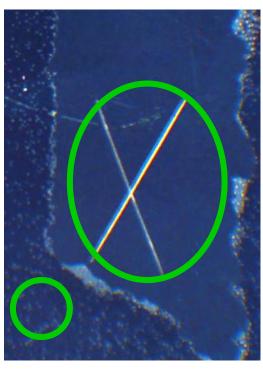
Florida SAE J2527 ASTM D7869


Erwartung: Kein Versagen - positive Kontrolle

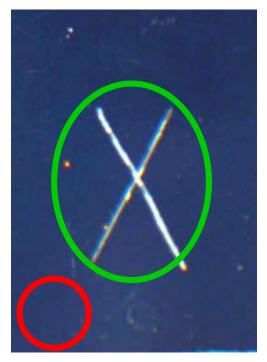

Beobachtung: Exzellente Leistung bei allen Tests

Korrelation II: Abblättern

Florida



Erwartung: Geringes Abblättern


Beobachtung: Falsch positiv für J2527, D7869 gute Korrelation

Korrelation III: Blasen & Delamination

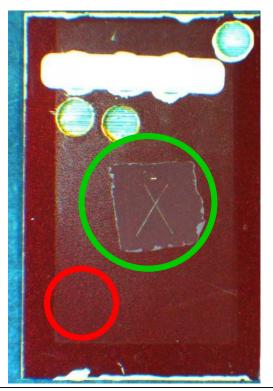
Florida

J2527

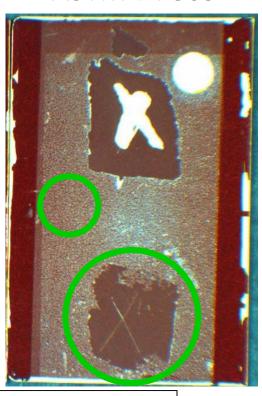
ASTM D7869

We make testing simple.

Erwartung: Blasen, Glanz- und Haftungsverlust


Beobachtung: Blasen Falsch negativ für J2527, D7869 gut

Korrelation IV: Blasenbildung


Florida

SAE J2527

ASTM D7869

Erwartung: Blasen, Glanz- und Haftungsverlust

Beobachtung: Blasen ähnlich bei J2527, bei D7869 besser

Korrelationsstudie für LKW Lacke

- ASTM D7869 reproduziert alle wesentlichen
 Fehlermechanismen wichtig für Korrelation
- Korrelationsgrad zwischen den Mustern ist nur dann gut, wenn die Abbauwege identisch sind!
- 1800 Std Laborbewitterung entsprechen bei vielen der getesteten Lacke 2 Jahre Florida (Beschleunigungsfaktor ~10)
- Eventuell auch f
 ür andere Materialien anwendbar, aber das muß erst durch eigene Freibewitterungsdaten verifiziert werden.

Korrelation Fallstudie #5:

Wandverkleidungen (Vinyl Siding)

Was sind Vinyl Panele?

- Co-extrudiertes Gebäudeverkleidungen
 - Hauptsächlich aus PVC hergestellt
 - Oberschicht ist besonders haltbar und UV-stabilisiert

- Entwickelt in 1960ern, besonders populär in den 1970ern
- In den USA das am meisten verwendete Verkleidungsmaterial (20 million m² p.a.)

US Vinyl Siding Institute

Freibewitterungsprogramm

- Groß angelegte Langzeitstudie
- Freibewitterungsdaten seit
 1984
- Neue Test Serie started alle
 5 Jahre mit Tausenden von
 Proben und Replikaten
- Abbaumechanismus ist jetzt gut bekannt.

Ziel: Korrelation zu einer relativ kurzen Freibewitterung

US Vinyl Siding Institute

Gebrauchsdauer-Zertifikat

- Die 25jährige Gebrauchsdauer wird an Hand einer 2jährigen Exposition abgeschätzt
 - Wenn die Farbänderung nach 2 Jahren kleiner DE<1, dann ist sie nach 25 Jahren vermutlich nicht größer als DE=4
 - Beschleunigungsfaktor 12:1
- 2 jähriges Zertifizierungsprogramm
 - Durch eine unabhängige ISO 17025 akkreditierte Prüfstelle
 - Exposition in FL, AZ, OH
 - Testsdurchführung gemäß ASTM / ISO Standards
 - Zertifikat und Siegel des Verbandes für eine 25 Jahre Garantie

45

Weitere Qualifikation / Korrelation US Vinyl Siding Institute (VSI)

- Das nächste Ziel: Ein Labortest für das 2 Jahresergebnis
- Sechs unabhängige Labore erarbeiteten Schnelltests für Xenon und für UV
- Ein einzigartiger (nicht veröffentlichter) UV Zyklus zeigte die beste Übereinstimmung
 - Die heiße Kondensationsphase des QUV hat einen wesentlichen Einfluß auf die realitätsnahe Alterung
 - Nur UV wichtig; VIS & IR haben keinen signifikanten Einfluss
 - Niedrige UV Temperaturen und höhere Kondensationstemperaturen ergeben das beste Resultat
- UV ist derzeit noch nicht für die Zertifizierung zugelassen, wird aber bereits erfolgreich in F&E eingesetzt

Zusammenfassung

Die verschiedenen Arten der beschleunigten Prüfungen

Schnellbewitterung sprüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation
Korrelationsprüfung	nach Rang gewichtete Daten	unbegrenztmittel	natürliche Freibewitterung (Referenzstandort)
Prognose	Lebensdauer Beschleunigungsfakt or	• unbegrenzt • lang	natürliche Freibewitterung (Einsatzumgebung)

Was man aus den Fallstudien lernen kann:

Alle Beschleunigungsfaktoren sind <u>unterschiedlich</u> und hängen ab von:

- 1. Dem speziellen Material im Test.
- 2. Der Testmethode, die mit der Freibewitterung korreliert wurde: UV, Xenon, Beschleunigte Freibewitterung
- 3. Den speziell ausgewählten Testzyklen und Temperaturen.
- 4. Dem Freibewitterungsgelände und der Art der Montage der Muster (rückseitig offen, auf Holz, Winkel)
- 5. Den ausgewerteten Fehlerbildern (Glanz, Festigkeit, u.s.w.)

Korrelation zwischen Labor und Freibewitterung

Oftmals und für viele Materialien kann eine Korrelation bestimmt werden, aber.....

- Ein Beschleunigungsfaktor ist niemals allgemeingültig und oft nur für einen Abbauweg gültig
- Vergleichstests geben oft nur Rangfolgen. Aber das können sehr wertvolle Informationen sein
- Ohne eine Freibewitterung kann es keine Korrelation geben. "Teste den Test"

Vielen Dank für Ihre Teilnahme!

Fragen?
info@q-lab.com