Die Grundlagen der Laborbewitterung

Dr. Andreas Giehl – European Technical and Standards Director

Joachim Neu – Senior Sales Manager

Christiaen Kors – Sales Manager

Q-Lab Corporation

Aufnahme Abrufen

Ein paar Anmerkungen vorweg ...

Sie erhalten in Kürze eine Email von

<u>info@email.q-lab.com</u>

mit den weiterführenden Links zu einer Umfrage, Anmeldung zu den weiteren Webinaren, und zum Download Bereich

- Diese Webinar Serie ist abrufbar unter: q-lab.com/webinarseries
- Unsere archivierten Webinare finden Sie: q-lab.com/webinars
- Bitte benutzen Sie die F&A Funktion in Zoom für Ihre heutigen Fragen!

Q-Lab Corporation

- Gegründet 1956
- Spezialisiert auf Geräte und Dienstleistungen für Gebrauchsdauerprüfungen

Westlake, Ohio Firmensitz & Produktion

Bolton, England Q-Lab Europe

Shanghai, China Q-Lab China

Saarbrücken Germany, Q-Lab Germany

Q-Lab Standorte für Freibewitterung

Worüber reden wir heute:

- Grundlagen der Bewitterung
- Wozu hilft die Laborbewitterung?
- Beschleunigte Labor Bewitterungsprüfungen
 - Xenon
 - UV-Röhren
- Elemente eines effizienten Test Programmes

Verwitterung:

Änderung von Materialeigenschaften durch Einwirkung der Strahlungsenergie des **Sonnenlichts** in Kombination mit **Wärme** (einschließlich Temperaturwechsel) und **Wasser** in verschiedenen Aggregatzuständen, insbesondere in Form von Feuchtigkeit, Tau und Niederschlag.

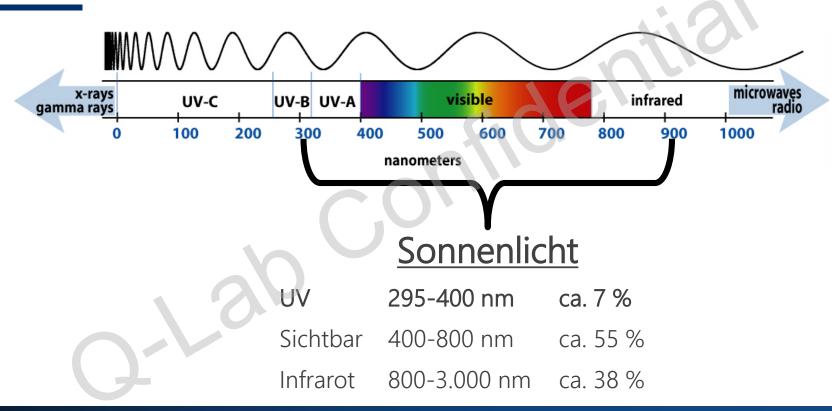
Kräfte bei der Bewitterung

Kenne deinen Feind!

- Sonnenlicht
- Wärme
- Wasser

^{*}Verwitterung kann noch durch weitere Faktoren beeinflusst werden, in diesem Seminar werden jedoch nur die genannten behandelt

Sonnenlicht

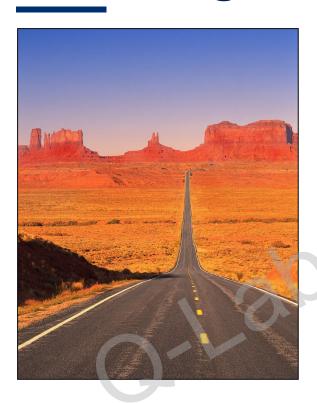


Sonnenlicht

- Energieform
- Elektromagnetische Strahlung
- Wird in der Regel beschrieben durch Bestrahlungsstärke und Wellenlänge (λ)

We make testing simple.

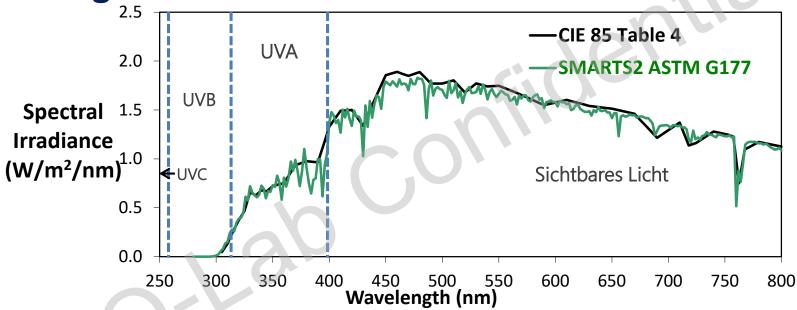
Elektromagnetisches Spektrum


We make testing simple.

Obwohl auf die UV-Strahlung nur 7 % der gesamten Strahlungsenergie des Sonnenlichts entfallen ...

... ist sie die Ursache für praktisch alle Polymerabbau-Reaktionen!

Bestrahlungsstärke


- Bestrahlungsstärke¹ Intensität, mit der Lichtenergie auf eine Oberfläche einwirkt, angegeben pro Flächeneinheit [W/m²] oder [J/s·m²]
- Fluenz¹ (oder Strahlungsdosis) –
 Bestrahlungsstärke pro Zeit [J/m²] oder [W·s/m²]
- Spektrale Bestrahlungsstärke² –
 Bestrahlungsstärke einer Fläche pro Wellenlänge [W/m²/nm]

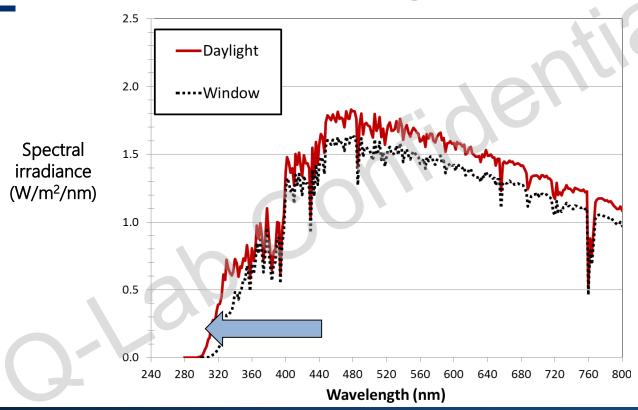
ASTM G113 –Terminologie
 ISO 9288 – Physikalische Größen und Definitionen

Spektrale Strahlungsverteilung (SSV)

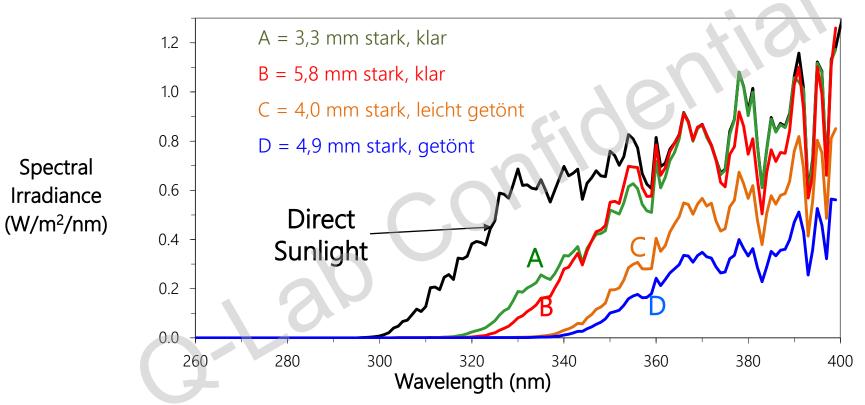
Mittagssonnenlicht im Sommer

SSV: Die absolute oder relative von einer Quelle abgegebene oder auf einen Empfänger fallende Strahlungsleistung als Funktion der Wellenlänge. (ASTM G113)

Einflussfaktoren auf das Spektrum


Sonnenwinkel

- Jahreszeit (z. B. Sommer)
- Tageszeit (z. B. Mittag)
- Breitengrad



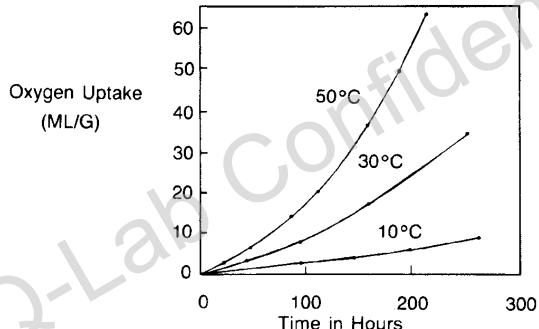
Höhe

Sonnenlicht hinter Fensterglas

Sonneneinstrahlung durch Autoglas

Wärme

Auswirkungen von Wärme

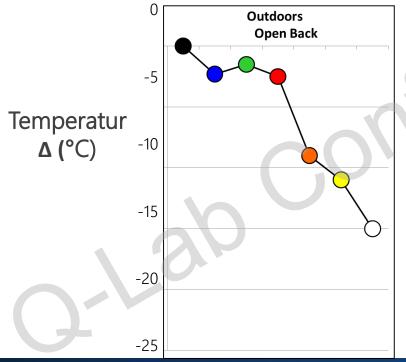

- Erhöhung der Prüflingstemperatur
- Änderung der Größe, Ausdehnung
- Verdampfung
- Wärmealterung
- Temperaturwechsel

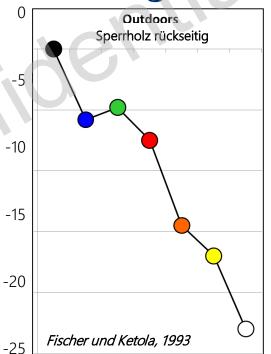
We make testing simple.

Auswirkungen der Temperatur:

Oxidationsgeschwindigkeit von Polyethylen

*Zeit in Stunden bei Bestrahlung mit UV-Lampen


Temperaturwechsel in Florida


- Von 75 °C auf 25 °C in 2 Minuten
- Führt zu physischer Beanspruchung
- Wirkt sich auf Beschichtungen auf Kunststoffen und Baugruppen aus

Temperatur und Farbe

Dunklere Farben führen zu stärkerer Erwärmung!

Wärme hinter Fensterglas

Die Temperatur von hinter Fensterglas befindlichen Teilen im Inneren eines Fahrzeugs kann 100 °C übersteigen

Wasser

Wesentliche Auswirkungen von Wasser

- Chemische Reaktionen
 - Reaktionen in Lösungen
 - Vereinfachung der Reaktion aufgrund eines besseren Sauerstofftransports
- Physikalische Effekte
 - Erosion
 - Absorption / Gefrieren und Tauen
 - Temperaturschock
 - Stoß (Materialverlust)

Luftfeuchte

- Maß für die Menge an Wasser in der Luft
- Kann zu physischer Beanspruchung führen
- Luftfeuchte hat Auswirkungen sowohl auf Produkte in Innenräumen als auch im Freien
- Wird häufig als relative Luftfeuchte (RH)
 ausgedrückt, wobei 100 % für die Höchstmenge an
 Wasser stehen, die bei einer bestimmten
 Temperatur von der Luft aufgenommen werden
 kann

Regen

- Oberflächeneffekte
 - Oberflächliche Schichten werden abgewaschen
 - Auskreiden
 - Reinigung

Temperaturschock

Tau

- Feuchtigkeit aus der Atmosphäre, die sich in Form von kleinen Tropfen auf jeder kühlen Oberfläche niederschläg
- Hoher O₂-Anteil
- Lange Verweildauer

Nicht Regen, sondern Tau ist für den Großteil der Benetzung im Freien verantwortlich!

In vielen Laborprüfungen zur Schnellbewitterung wird kein Tau simuliert!

Die Auswirkungen von Feuchtigkeit sind nicht zu unterschätzen!

- Änderung der Abbau-Geschwindigkeit
- Änderung der Art des Abbaus
- Schwer zu beschleunigen

Zusammenfassung: Kräfte bei der Bewitterung

Sonnenlicht

- UV-Licht ist die Ursache für praktisch alle Polymerabbau-Reaktionen
- Kleine Änderungen in der Zusammensetzung und/oder im Spektrum können große Auswirkungen auf den Abbau von Stoffen haben

Wärme (Temperatur)

- Sonnenlicht + Wärme = höhere Abbaugeschwindigkeit
- Die Temperaturzunahme eines Stoffes unter Sonneneinstrahlung hängt stark von seiner Farbe ab

Wasser (Feuchtigkeit)

- Sonnenlicht + Wärme + Wasser = Verwitterung
- Nicht Regen, sondern Tau ist für den Großteil der Benetzung im Freien verantwortlich
- Im Außenbereich befindliche Produkte sind viel länger Feuchtigkeit ausgesetzt als Sie denken

Synergetische Effekte zwischen diesen Faktoren tragen zur Verwitterung bei!

Worüber reden wir heute:

- Grundlagen der Bewitterung
- Wozu hilft die Laborbewitterung?
- Beschleunigte Labor Bewitterungsprüfungen
 - Xenon
 - UV-Röhren
- Elemente eines effizienten Test Programmes

Warum prüfen?

- Einhalten von Spezifikationen
- Vermeiden von Unfällen
- Stärken des Markenansehens
- Überprüfen der Produktversprechen von Lieferanten
- Verbessern der Produkthaltbarkeit

- Sparen von Materialkosten
- Erweitern bestehender Produktlinien
- Erschließen neuer Märkte
- Übertreffen der Wettbewerber
- Einhalten von Vorschriften

(Labor-) Schnellbewitterung als Werkzeug zur Entscheidungsfindung

Schnellbewitterungsprüfungen können dazu beitragen...

- schnellere und/oder bessere Entscheidungen zu treffen.
- die Gefahr von Fehlentscheidungen zu verringern.
- die Gefahr zu langsamer Entscheidungen verringern.
- zielgerichtete Entscheidungen für Forschung und Entwicklung zu treffen.

Welche Prüfungen soll ich durchführen?

Schnellbewitterungsp rüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen

Welche Prüfungen soll ich durchführen?

Schnellbewitterungsp rüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation

Welche Prüfungen soll ich durchführen?

Schnellbewitterungsp rüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation
Korrelationsprüfung	nach Rang gewichtete Daten	unbegrenztmittel	natürliche Freibewitterung (Referenzstandort)

Welche Prüfungen soll ich durchführen?

Schnellbewitterungsp rüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation
Korrelationsprüfung	nach Rang gewichtete Daten	unbegrenztmittel	natürliche Freibewitterung (Referenzstandort)
Prognose	Lebensdauer Beschleunigungsfaktor	unbegrenztlang	natürliche Freibewitterung (Einsatzumgebung)

Was ist Natürliche Bewitterung?

 Exposition von Materialien im Freien gegen unkonzentriertes Sonnenlicht, mit dem Ziel, den Einfluss von Umweltfaktoren auf bestimmte funktionale oder dekorative Eigenschaften zu bestimmen.

- Anerkannte (Benchmark) Bewitterungsstandorte:
 - Süd Florida (Subtropisch)
 - Arizona (Trocken/heiß, Wüste)
 - Midwest (Industriestandort)

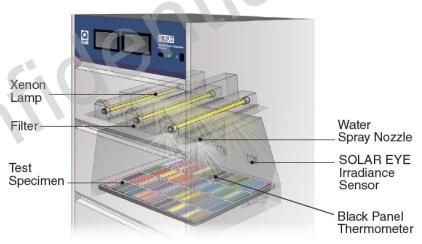
Warum ist Freibewitterung so wichtig?

- Freibewitterung ist deutlich komplexer als künstliche (Labor-) Bewitterung
- Labor Tests sind nicht zwangläufig realistisch
- Die Aussagekraft von Labor Tests sollte immer durch Freibewitterungsergebnisse validiert werden.
- Die Ergbnisse von regelmäßigen Freibewitterungs-tests stellen einen sehr wertvollen Datensatz zu günstigen Kosten dar.

Worüber reden wir heute:

- Grundlagen der Bewitterung
- Wozu hilft die Laborbewitterung?
- Beschleunigte Labor Bewitterungsprüfungen
 - Xenon
 - UV-Röhren
- Elemente eines effizienten Test Programmes

Xenon Bogen Lampen


Beschleunigte Labor Bewitterung

Xenon Bogen Prüfkammern

Rotation oder Flachbett

Xenonbogenlampen Luftgekühlt Wassergekühlt Wassergekühlt als Baugruppe

Kalibrierung der Strahlungsstärke bei Xenonlampen

Xenonbogenlampen werden mithilfe einer kalibrierten
Referenzlampe oder eines Kalibrier-Radiometers kalibriert und
eingestellt
KalibrierRadiometer

Kalibrierte Referenzlampe

Kalibrier-Strahlungssensor

Überblick über Filter

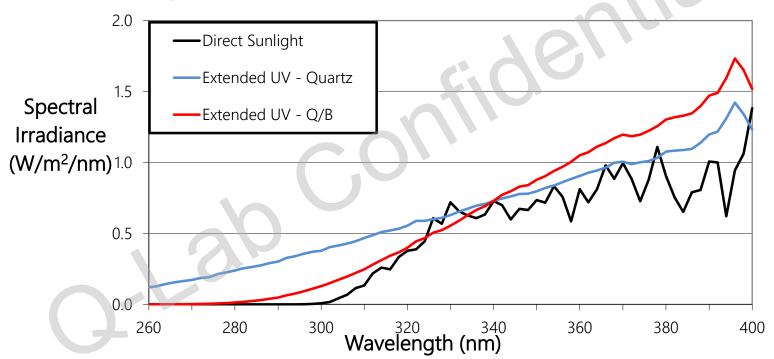
- Daylight
- Window
- Extended UV

Für rotierende Trommel ("Filterlaterne")

Für flaches Probentablett

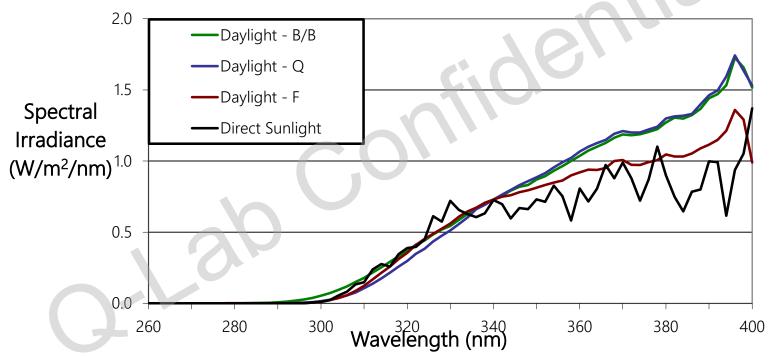
*Bei Bedarf werden weitere Spezialfilter verwendet

Spektren von Xenonbogenlampen

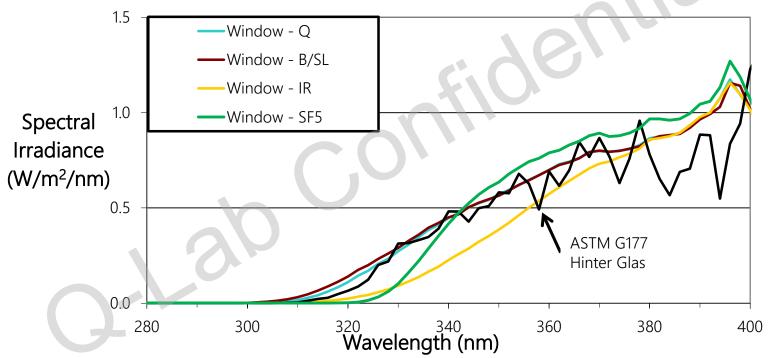

Haupteinflussfaktoren

- Optische Filter
- Bestrahlungsstärke (Intensität)
- Wellenlänge, bei der die Bestrahlungsstärke geregelt wird ("Regelpunkt")
- Alterung der Lampe

Xenonbogenlampe


mit Filter des Typs "Extended UV" UV-Spektrum

Xenonbogenlampe


mit Filter des Typs "Daylight" UV-Spektrum

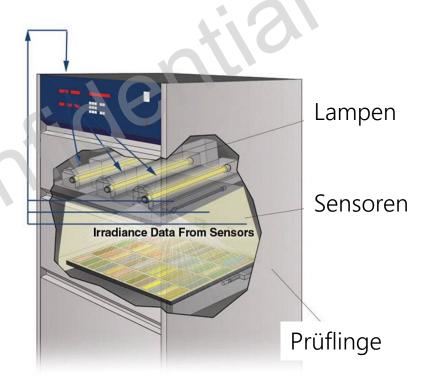
Xenonbogenlampe

mit Filter des Typs "Window" UV-Spektrum

Alterung optischer Filter

Wasserkühlung und Luftkühlung

- Filter für wassergekühlte Lampensysteme müssen alle 400-2.000 Stunden ersetzt werden
 - Die Durchlässigkeit der Filters nimmt durch Verunreinigungen, die selbst in Reinstwasser enthalten sind, im Laufe der Zeit ab
- Filter für luftgekühlte Lampensysteme altern in der Regel nicht und müssen nicht ersetzt werden



We make testing simple

SOLAR EYETM-Strahlungsregelung

bei Q-SUN-Prüfgeräten

- Regelkreis
 - Xenonbogenlampe
 - Strahlungssensor
 - Steuermodul
- Die Wellenlänge, bei der die Bestrahlungsstärke geregelt wird, wird als Regelpunkt bezeichnet

Optionen für den Regelpunkt der Bestrahlungsstärke

- Schmalband
 - 340 nm
 - 420 nm
- Breitband
 - Total UV (TUV; 300-400 nm)
 - Global (300-800 nm) nicht empfohlen
 - Kürzere Wellenlängen verursachen höheren Photoabbau
 - Alterung der Xenonlampe wird nicht berücksichtigt

Warum ist die Auswahl des Regelpunkts so wichtig?

- Xenonbogenlampen altern bei Gebrauch
- Die Lebensdauer einer Lampe wird durch Verschiebungen im Spektrum begrenzt
- Durch Regelung der Bestrahlungsstärke im relevanten Wellenlängenbereich wird die Wiederholbarkeit und Reproduzierbarkeit verbessert

Temperaturregelung mit Schwarztafelsensor

- Geläufigste in Prüfverfahren vorgesehene Methode
- Annäherung an maximale Oberflächentemperatur von Prüflingen
- Kann in Kombination mit Sensor und Steuereinheit für die Lufttemperatur in der Prüfkammer verwendet werden

Schwarztafel und Schwartzstandard sensoren

Schwarztafel	Bauweise	Bezeichnung gemäß ASTM	Bezeichnung gemäß ISO
G-lab.com	Schwarz beschichtete Edelstahlplatte	Nicht isolierte Schwarztafel	Schwarztafel
qlab.com	Schwarz beschichtete Edelstahlplatte auf 0,6 cm starker weißer PVDF-Platte	Isolierte Schwarztafel	Schwarzstandard

^{*}Es sind auch Weißtafeln erhältlich, die den oben aufgeführten Schwarztafeln entsprechen, diese sind jedoch weit weniger geläufig

Für höchstmögliche Geschwindigkeit höchstmögliche Einsatztemperatur herstellen

Für **geringstmögliches**Fehlerpotenzial höchstmögliche
Einsatztemperatur *NICHT*überschreiten

Regelung der Lufttemperatur in der Prüfkammer (CAT)

- Für verschiedene Prüfmethoden vorgeschrieben
- Zur Regelung der relativen Luftfeuchte (RH) erforderlich
- Sensor muss vor Licht geschützt werden
- Schwarztafel ist durch Absorption von Strahlungswärme immer wärmer als Luft in Prüfkammer

Regelung der relativen Feuchte

- Für viele Prüfmethoden vorgeschrieben
 - Textilien
 - Automobilprodukte (SAE)
- Relative Luftfeuchte kann bei vielen Xenon-Prüfgeräten erzeugt und geregelt werden
 - Boilersystem
 - Zerstäubersystem
- Bei vielen langlebigen Stoffe hat die relative Luftfeuchte im Vergleich zur Besprühung und Betauung sehr geringe Auswirkungen

Xenonbogen-Prüfgeräte

Besprühung mit Wasser

- Besprühung von vorne
 - Primäres Besprühungsverfahren
 - Kalibriertechnik für Besprühung von vorne wurde erst kürzlich entwickelt (ASTM D7869)
- Besprühung von hinten
 - Ergebnis eines fehlgeschlagenen Experiments zur Erzeugung von Kondenswasser; in manchen Normen noch gefordert
- Zweifachbesprühung
 - Zur Ausbringung einer zweiten Lösung, z. B. saurem Regen oder Seifenlauge
- Eintauchen (Untertauchen)
 - Alternative zur Besprühung von vorne; wird in manchen Normen gefordert

Xenonbogen-Prüfgeräte

Unzulängliche Besprühung mit Wasser?

- Bei Xenon-Prüfgeräten mit rotierender Trommel wird evtl. zu wenig Wasser auf die Prüflinge aufgebracht;
- In ASTM D7869 wird eine Kalibrierung der Wasserversorgung gefordert, die eine ausreichende Besprühung der Prüflinge garantieren soll.

Xenonbogenlampen – Zusammenfassung

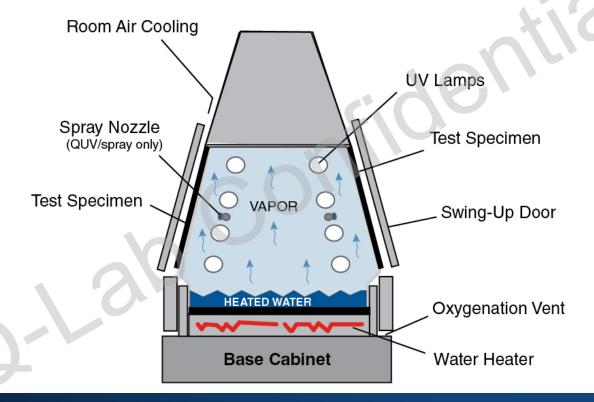
- Beste Simulation des gesamten Sonnenlichtspektrums
- Lampen altern ("Wippeneffekt")
- Temperaturauswirkungen
- Besprühung mit Wasser und RH-Regelung
- Höherer Kosten- und Wartungsaufwand sowie im Vergleich zu Prüfgeräten mit UV-Leuchtstofflampen höhere Komplexität

Q-SUN Xenon Arc Testers

Xe-1

Xe-2

Xe-3



Schnellbewitterungs-prüfungen mit UV-Leuchtstofflampen

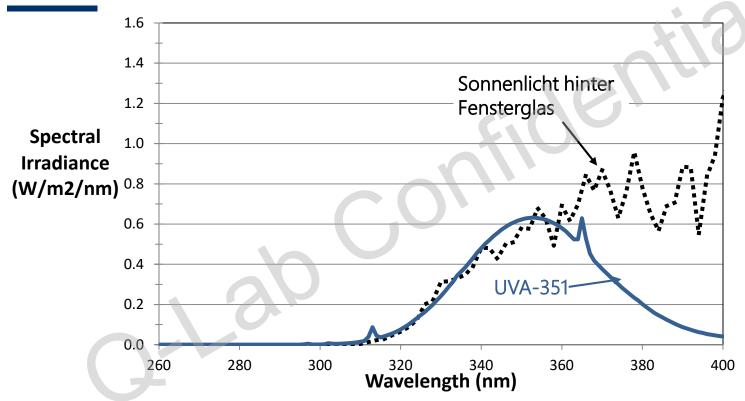
QUV - 1970 entwickelt

Schematische Darstellung des QUV-Prüfgeräts

UV-Leuchtstofflampen

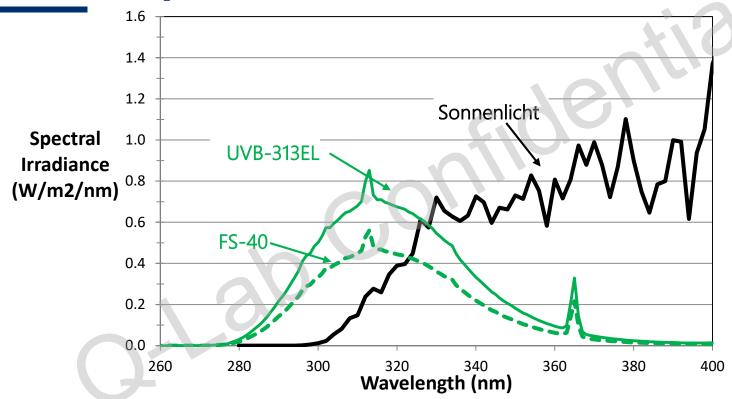
QUV Lampen Übersicht

- UVA-340 (Tageslicht UV)
- UVA-351 (Fensterglas UV)
- UVB-313EL/FS-40 (Extended UV)
- Cool White (Innenraum)

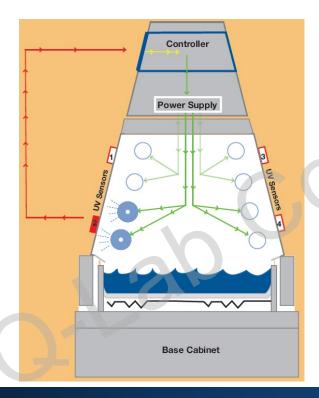


UVA-340-Lampen

1.6 1.4 1.2 Sonnenlicht Spectral 1.0 Irradiance 8.0 $(W/m^2/nm)$ 0.6 0.4 UVA-340 0.2 0.0 260 280 300 320 340 360 380 400 Wavelength (nm)



UVA-351-Lampen



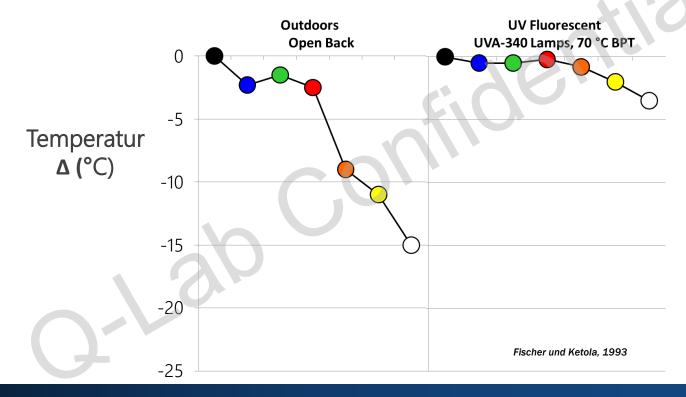
UVB-Lampen

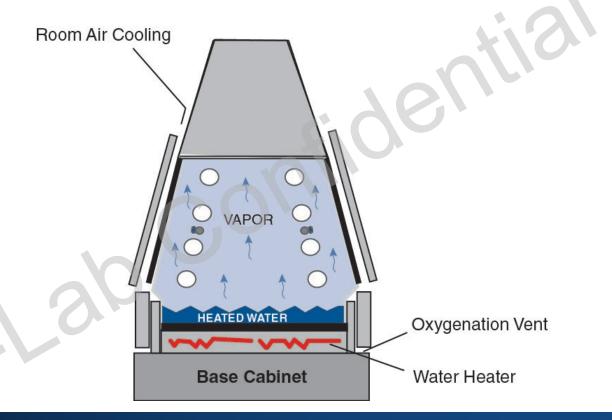
SOLAR EYE™-Strahlungsregelung bei QUV

Regelkreis

- UV-Leuchtstofflampe
- Strahlungssensor
- Steuermodul

Vorteile von Leuchtstofflampen


- Schnelle Ergebnisse
- Einfachere Strahlungsregelung
- Sehr stabiles Spektrum keine Alterung
- Geringer Wartungsaufwand
 - Einfache Kalibrierung
- Geringer Preis und geringe Betriebskosten
- Einfache und benutzerfreundliche Wartung


We make testing simple

Temperatur und Farbe

Temperaturunterschiede zwischen farbigen Prüfblechen und einer Schwarztafel

Kondensation

Vorteile der Kondensation im QUV-Prüfgerät

- Größte Übereinstimmung mit natürlicher Benetzung
- Beste Möglichkeit zur beschleunigten Simulation von Wasserauswirkungen in einem Labor-Prüfgerät
- Erhöhte Temperatur
- Hoher O₂-Gehalt
- Destillation im Prüfgerät keine Ablagerung von Rückständen auf Prüflingen! Garantiert sauberes Wasser

Im QUV-Prüfgerät kann einfach Kondenswasser erzeugt werden – kein teures Reinwasser erforderlich

Besprühung mit Wasser

- Sorgt für vollständige Sättigung der Teile
- Sorgt für Erosion und Temperaturschock

Besprühung ist im QUV-Prüfgerät schwierig und relativ teuer

UV-Leuchtstofflampen – Zusammenfassung

- UVA-340: beste Simulation von kurzwelliger UV-Strahlung
- UVB-313: schnellste und anspruchsvollste Prüfung
- Stabiles Spektrum keine Alterung
- Kein sichtbares Licht
- Realistische und gründliche Betauung
- Wasserbesprühung, aber keine RH-Regelung möglich

QUV Labor Bewitterungs Tester

Model QUV/se

We make testing simple.

UV Röhren and XenonBogen

sind sich ergänzenzende Technologien!

UV Röhren		Χe	Xenon Bogen	
•	UVA-340 bestmögliche Simulation des UV Anteils der Sonne	•	Voll Spektrum (UV-Vis-IR)	
•	UVB-313 könnte ggf. zu hart sein Kein Anteil im sichtbaren Licht	• (Beste Simulation des gesamten Sonnenlichts	
_	Kein Anteil im Sichtbaren Licht			
•	Stabiles Spektrum		Spektrum verändert sich	
•	Keine RH Kontrolle	•	RH Kontrolle	
•	Kondensation or Wasser sprühen	•	Wasser sprühen	
•	Günstig, einfache Handhabung	•	Deutlich komplexeres System und höhere Prüfkosten	

Worüber reden wir heute:

- Grundlagen der Bewitterung
- Wozu hilft die Laborbewitterung?
- Beschleunigte Labor Bewitterungsprüfungen
 - Xenon
 - UV-Röhren
- Elemente eines effizienten Test Programmes

Welche Prüfungen soll ich durchführen?

Schnellbewitterungsp rüfung	Ergebnis	Dauer der Prüfung	Ergebnisabgleich mit
Qualitätskontrolle	bestanden / nicht bestanden	• fix • kurz	Materialspezifikationen
Qualifikation / Validierung	bestanden / nicht bestanden	fixmittel bis lang	Referenzmaterial oder Spezifikation
Korrelationsprüfung	nach Rang gewichtete Daten	unbegrenztmittel	natürliche Freibewitterung (Referenzstandort)
Prognose	Lebensdauer Beschleunigungsfaktor	unbegrenztlang	natürliche Freibewitterung (Einsatzumgebung)

Ein Test Programm erstellen:

- Art des beschleunigten Tests identifizieren
 - Freibwitterungsdaten sind ein "Muss" für Korrelation oder Vorhersagen
- Anwendungsumfeld identifizieren
 - Innen oder im Freien
 - Trocken oder Nass
 - Heiß oder kalt

Ein Test Programm erstellen:

- Bewährte Methodik anwenden:
 - Prüfen, bis zu einem definierten Fehlerbild
 - Mehrere Prüflinge (Statistik)
 - Regelmäßige Zwischenbewertung und Umlagerung
- Auswahl einer geeigneten Test Architektur
 - Was sagt der Standard?
 - Ist Vollspektrum notwendig?
 - Wie wichtig ist die Wasseraufnahme?

<u>Vielen Dank für Ihre Teilnahme!</u>

Fragen ? info@q-lab.com

