Relative Humidity and Wet/Dry Transitions in Salt Spray Corrosion Tests and Wet/Dry Transport of August 2016
 y Corrosion Tests

Keting Director

Fechnical Marketing Specialist

Nior Technical Marketing Specialist

Andy Francis – Marketing Director

Bill Tobin – Senior Technical Marketing Specialist

Dave Duecker – Senior Technical Marketing Specialist

Sean Fowler – Senior Technical Director

Q-Lab Corporation Dave Duecker – Senior
Sean Fowler – Senior Te
Q-Lab Corporat

[View Recorded Presentation](https://youtu.be/ttlROBRFxSY)

Q-Lab's Webinar Series

Today is the second of a three-part webinar series on **corrosion**

- Our ongoing webinar series is at: [q-lab.com/webinarseries](http://www.q-lab.com/webinarseries)
- Our archived webinars are hosted at: [q-lab.com/webinars](http://www.q-lab.com/webinarseries)

Presentation file, Q&A

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

Use the **Q&A feature in Zoom** to ask us questions today! We'll stay on after the presentation is completed to answer all questions

We make testing simple.

Topics

- Corrosion Test Reproducibility
- Deliquescence and its impact on wet/dry times
- Theoretical effects of wet/dry transition times
- ASTM G85 Annex 5 (Prohesion)
- SAE J2334: OEM Implementation
- How today's standards handle moisture transitions Examples and its impact on wet/dry times

effects of wet/dry transition times

Annex 5 (Prohesion)

OEM Implementation

s standards handle moisture transition

Corrosion Test Reproducibility

Wet/dry cyclic tests…

- generally are more realistic than continuous salt spray
- often have such poor reproducibility that many companies do not use them despite better realism Example 19 are more realistic than continuous
pray
en have such poor reproducibility than
panies do not use them despite better
lism

Salts in the Environment & TOW

- Salts *deliquesce* they absorb moisture from the atmosphere until they dissolve and form a solution.
- All soluble salts will liquefy for RH values <100%
- This leads to increased **time of wetness** and increased **corrosion** deliquesce - they absorb moisture fro
phere until they dissolve and form a
uble salts will liquefy for RH values <
ads to increased **time of wetness** an
sed **corrosion**

Deliquescence Relative Humidity (DRH)

if the environment is above this RH, a liquid salt solution will form

Q

RH Transitions in Corrosion Testing **8 8**

 Ω

RH Transitions in Corrosion Testing **10**

We make testing simple.

Relative Humidity and Corrosion

Galvanic corrosion during ramping 50% < RH < 76%

 Ω

 $\frac{1}{\alpha^{LAB}}$

 $\frac{1}{\alpha^{LAB}}$

RH Conditions in the Natural Environment

RH Transitions in Corrosion Testing **16**

 Q

Reproducibility Case Study ASTM G85 Annex 5 (Prohesion)

1 Hour fog at "ambient" temperature (room should be 24°C) 1 hour dry-off 35°C ASTM G85 Annex 5 (Prohesion)

"ambient" temperature (room shoul
 $= 35^{\circ}$ C

0.05% NaCl

0.35% (NH₄)₂SO₄

pH: 5.0 - 5.4

Solution: 0.05% NaCl 0.35% (NH₄)₂SO₄ pH: 5.0 - 5.4

Reproducibility Case Study ASTM G85 Annex 5 (Prohesion)

- *How dry is dry?*
- *How long does it take to achieve a "dry" condition?*

Answers are in the non-mandatory appendix: "within ¾ hour all visible moisture is dried off the specimens" ASTM G85 Annex 5 (Prohesion)

s dry?

does it take to achieve a "dry" condit

in the non-mandatory appendix:

ur all visible moisture is dried off the

Problem Statement

"My new chamber isn't as severe as my old one"

After 1000 hours of Prohesion, new chamber produced less severe results on a coatings test

Older Q-FOG CCT Newer Q-FOG CRH

Prohesion RH Profile in Two Chambers

Q-FOG CCT Cycle: Step 1: Fog 24°C 1:00 Step 2: Dry 35°C 1:00 Step 3: Go to Step 1

Q-FOG CRH Cycle:

Step 1: Fog 24°C 1:00 Step 2: RH 35°C, 25% RH *1:00 Auto transition* Step 3: Go to Step 1

Q

 $-1AP$

Modified CRH Prohesion Cycle

Modified Prohesion Cycle:

Step 1: FOG 24°C 1:00

Step 2: RH 35°C, 95%RH *0:30 Auto transition*

Step 3: RH 35°C, 25% RH *0:30 Auto transition*

Step 4: Go to Step 1

Q-FOG CCT Q-FOG CRH (modified cycle)

RH Transitions in Corrosion Testing **21**

Q

 $Q-LAB$

Q-FOG CCT vs CRH

Q-FOG CCT has simple humidity generation without air flow and dry-off by blown heated air through chamber

Q

 $94A$

Q-FOG CRH Linear and Auto Ramping Transition from Wet to Dry

 \mathbf{Q}

Reproducibility Case Study SAE J2334

Test Solution 0.5% NaCl 0.1% CaCl₂ 0.075% NaHCO₃ SAE J2334

Solution

5% NaCl

2% CaCl₂

3% NaHCO₃

12. Equals to the position of the contract confidence of the contract contract contract Confidence of the Confidence of the Confidence of the Confidence of the Confid

This is the same as GM 9540P and GMW 14872

Salt solution applied by

- *Immersion (used to develop method)*
- *Fog (may not deposit much salt on specimens)*
- *Shower (most common today)*

SAE J2334

Q

 $-1AP$

OEM Implementation of J2334

Added mass loss requirement after 20 cycles: **1.3 – 3.0 g**

Topcoat specification: Rust "Creepback Value Before Scraping"

Average: 4, maximum 6.5

The Problem

- U.S. lab "passed" a formulation (average CVBS < 3)
- European lab "failed" same formulation (average CVBS > 6)
- Formulation was a proven durable system (used as a test control) "passed" a formulation

CVBS < 3)

an lab "failed" same formulation

CVBS > 6)

ation was a proven durable system

a test control)

an lab coupon mass loss too high

ar 20 cycles - 3 g is max allowed)
- European lab coupon mass loss too high (~5 g after 20 cycles—3 g is max allowed)

Experiment 1: Salt Shower Quantification

- Amount of collections correlated with mass loss (previously known from GMW 14872 testing)
- Adjusted spray on/off time to reduce spray (10ml/cycle)
- Mass loss remained high!

 $\mathbf Q$

What about chamber conditions?

Wet to dry transitions were programmed differently in U.S. lab (other chamber) and European lab (Q-FOG CRH) transitions were programmed different ther chamber) and European lab (Q-Finute transition step added to U.S. chambers of reduction (a common practice)

– 20 minute transition step added to U.S. chamber to speed up RH reduction (a common practice)

Experiment 2: Quick and Slow Dry Times

Test original default SAE J2334 cycle in Q-FOG and another cycle designed to achieve faster dry-off time inal default SAE J2334 cycle in Q-
ycle designed to achieve faster dr

Slow Dry-off Programming Cycle

Q

 Q_L

Slow Dry-off

This version of the test was Q-Lab's default program for J2334 Linear transition after spray

 $\frac{1}{\alpha^{LAB}}$

Slow Dry-off (Zoom)

Zoomed in view of the transition

During the transition, the time above the Deliquescence RH of NaCl is about 1 hour

RH Transitions in Corrosion Testing **33**

 Ω

Rapid Dry-off Programming Cycle

Rapid Dry-off

This version of the test cycle is programmed to be similar to customer's U.S. laboratory (in a different chamber)

 $\frac{1}{\alpha^{LAB}}$

Rapid Dry-off (Zoom)

Zoomed in view of the transition

During the transition the time above the Deliquescence RH of NaCl is about 10 minutes

 Ω

Corrosion Coupon Mass Loss

Green bars represent test under slow dry-off conditions

Blue bars represent test under rapid dry-off conditions

Red lines represent tolerance of OEM standard

Under the rapid dry test, the coated panels once again passed the test

Q

Environmental Transitions in Today's Standards: Two Approaches Two Approaches

nutes wet to dry)

Companies

SO M609

COMEXERENT CONVERTION

COMEXE

Rapid (<30 minutes wet to dry)

- Japanese Car Companies
- CCT I, II, IV, JASO M609
- Renault ECC1

Controlled/Linear

- Volvo ACT1
- Volvo ACT2/Ford L-467
- GMW 14872
- Renault ECC1
- VDA 233-102

JASO M609 (ISO 14993, 11997-1)

- Chamber Volume 1100 l
- Chamber Load 240 x 4" x 6" Steel Panels
- Laboratory Room Temperature 28-30 °C

Q

 Q_L

JASO M609

Transition times for JASO M609 in full Q-FOG CRH 1100 HSCR Chamber.

Renault D17-2028 (ECC1)

- Chamber Volume 1100 l
- Chamber Load 240 x 4" x 6" Steel Panels
- Laboratory Room Temperature 26-28 °C

Q

 Q_L

Volvo VCS 1027, 149 (ACT I)

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25 °C

 Q

Volvo VCS 1027, 1449 (ACT-II)/Ford L-467

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25 °C

Q

 $94A$

GMW 14872

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25°C

 Ω

Questions?

 Ω