Relative Humidity and Wet/Dry Transitions in Salt Spray Corrosion Tests

Andy Francis – Marketing Director

Bill Tobin – Senior Technical Marketing Specialist

Dave Duecker – Senior Technical Marketing Specialist

Sean Fowler – Senior Technical Director

Q-Lab Corporation

View Recorded Presentation

Q-Lab's Webinar Series

 Today is the second of a three-part webinar series on corrosion

- Our ongoing webinar series is at: <u>q-lab.com/webinarseries</u>
- Our archived webinars are hosted at: <u>q-lab.com/webinars</u>

Date	Topic
03 Mar	Introduction to Atmospheric Corrosion
10 Mar	Relative Humidity and Wet/Dry Transitions in Salt Spray Corrosion Tests
17 Mar	The Corrosion Accelerated Test with Controlled Humidity (CATCH)

Presentation file, Q&A

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

Use the **Q&A feature in Zoom** to ask us questions today! We'll stay on after the presentation is completed to answer all questions

We make testing simple.

Thank you for attending our webinar!

We hope you found our webinar on *Relative Humidity and Wet/Dry Transitions in Salt Spray Corrosion Tests* to be helpful and insightful. The link below will give you access to the slides and recorded webinar.

You can help us continue to provide valuable and high-quality content by completing our 3-question survey about your webinar experience. Every piece of feedback is carefully reviewed by a member of our team.

Topics

- Corrosion Test Reproducibility
- Deliquescence and its impact on wet/dry times
- Theoretical effects of wet/dry transition times
- ASTM G85 Annex 5 (Prohesion)
- SAE J2334: OEM Implementation
- How today's standards handle moisture transitions

Corrosion Test Reproducibility

Wet/dry cyclic tests...

- generally are more realistic than continuous salt spray
- often have such poor reproducibility that many companies do not use them despite better realism

Salts in the Environment & TOW

- Salts deliquesce they absorb moisture from the atmosphere until they dissolve and form a solution.
- All soluble salts will liquefy for RH values <100%
- This leads to increased time of wetness and increased corrosion

Deliquescence Relative Humidity (DRH)

Salt	DRH
Potassium Chloride (KCI)	85%
Ammonium Sulfate (NH ₄) ₂ SO ₄	81%
Sodium Chloride (NaCl)	76%
Sodium Nitrate (NaNO ₃)	74%
Magnesium Chloride (MgCl ₂)	33%
Calcium Chloride (CaCl ₂)	31%

if the environment is above this RH, a liquid salt solution will form

KCI (DRH = 85%)

Relative Humidity and Corrosion

Condition	RH Range	Result		
Dry	≤ 50%	Very little corrosion from NaCl		
Electrolytic cells around salt crystals; film formation as RH increases	50-76%	 Corrosion of steel (maximum corroded area ~70% RH) and aluminum AL-Steel galvanic couple broken 		
Uniform Electrolytic Film formation	≥76%	 Maximum cathode area for steel; deeper non-uniform corrosion Al corrosion in galvanic couple with steel 		

Galvanic corrosion during ramping

50% < RH < 76%

Galvanic corrosion during ramping

High RH > 76%

Galvanic corrosion during ramping

High RH > 76%

RH Conditions in the Natural Environment

Reproducibility Case Study ASTM G85 Annex 5 (Prohesion)

1 Hour fog at "ambient" temperature (room should be 24°C)

1 hour dry-off 35°C

Solution: 0.05% NaCl

0.35% (NH₄)₂SO₄

pH: 5.0 - 5.4

Reproducibility Case Study ASTM G85 Annex 5 (Prohesion)

- How dry is dry?
- How long does it take to achieve a "dry" condition?

Answers are in the non-mandatory appendix: "within ¾ hour all visible moisture is dried off the specimens"

Problem Statement

"My new chamber isn't as severe as my old one"

After 1000 hours of Prohesion, new chamber produced less severe results on a coatings test

Older Q-FOG CCT

Newer Q-FOG CRH

Prohesion RH Profile in Two Chambers

Q-FOG CCT Cycle:

Step 1: Fog 24°C 1:00

Step 2: Dry 35°C 1:00

Step 3: Go to Step 1

Q-FOG CRH Cycle:

Step 1: Fog 24°C 1:00

Step 2: RH 35°C, 25% RH

1:00 Auto transition

Step 3: Go to Step 1

Modified CRH Prohesion Cycle

Modified Prohesion Cycle:

Step 1: FOG 24°C 1:00

Step 2: RH 35°C, 95%RH

0:30 Auto transition

Step 3: RH 35°C, 25% RH

0:30 Auto transition

Step 4: Go to Step 1

Q-FOG CCT

Q-FOG CRH (modified cycle)

Q-FOG CCT vs CRH

Q-FOG CCT has simple humidity generation without air flow and dry-off by blown heated air through chamber

Q-FOG CRH has atomizing humidification nozzles, an air drier (chiller), and a recirculation system with damper to regulate moist and dry air streams

Q-FOG CRH Linear and Auto Ramping Transition from Wet to Dry

Reproducibility Case Study SAE J2334

Test Solution

0.5% NaCl

0.1% CaCl₂

0.075% NaHCO₃

This is the same as GM 9540P and GMW 14872

Salt solution applied by

- Immersion (used to develop method)
- Fog (may not deposit much salt on specimens)
- Shower (most common today)

SAE J2334

Cosmetic Corrosion LabTest Cycles SAE J2334 - 5 Day/Week - Manual Operation

Cosmetic Corrosion LabTest Cycles SAE J2334 - 7 Day/Week - Automatic Operation

OEM Implementation of J2334

Added mass loss requirement after 20 cycles: 1.3 – 3.0 g

Topcoat specification:
Rust "Creepback Value Before
Scraping"

Average: 4, maximum 6.5

The Problem

- U.S. lab "passed" a formulation (average CVBS < 3)
- European lab "failed" same formulation (average CVBS > 6)
- Formulation was a proven durable system (used as a test control)
- European lab coupon mass loss too high (~5 g after 20 cycles—3 g is max allowed)

Experiment 1: Salt Shower Quantification

- Amount of collections correlated with mass loss (previously known from GMW 14872 testing)
- Adjusted spray on/off time to reduce spray (10ml/cycle)
- Mass loss remained high!

What about chamber conditions?

Wet to dry transitions were programmed differently in U.S. lab (other chamber) and European lab (Q-FOG CRH)

 20 minute transition step added to U.S. chamber to speed up RH reduction (a common practice)

Experiment 2: Quick and Slow Dry Times

Test original default SAE J2334 cycle in Q-FOG and another cycle designed to achieve faster dry-off time

Slow Dry-off Programming Cycle

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	RH	50	100	6:00	Auto
2	SHOWER	25		0:15	
3	RH	60	50	17:45	Linear (2:00)
4	Final Step - Go To Step 1				

Slow Dry-off

This version of the test was Q-Lab's default program for J2334 Linear transition after spray

Slow Dry-off (Zoom)

Zoomed in view of the transition

During the transition, the time above the Deliquescence RH of NaCl is about 1 hour

Rapid Dry-off Programming Cycle

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	RH	50	100	6:00	Auto
2	SHOWER	25		0:15	
3	RH	35	30	0:20	
3	RH	60	50	17:25	Auto
4	Final Step - Go To Step 1				

Rapid Dry-off

This version of the test cycle is programmed to be similar to customer's U.S. laboratory (in a different chamber)

Rapid Dry-off (Zoom)

Zoomed in view of the transition

During the transition the time above the Deliquescence RH of NaCl is about 10 minutes

Corrosion Coupon Mass Loss

Green bars represent test under slow dry-off conditions

Blue bars represent test under rapid dry-off conditions

Red lines represent tolerance of OEM standard

Under the rapid dry test, the coated panels once again passed the test

Environmental Transitions in Today's Standards: Two Approaches

Rapid (<30 minutes wet to dry)

- Japanese Car Companies
- CCT I, II, IV, JASO M609
- Renault ECC1

Controlled/Linear

- Volvo ACT1
- Volvo ACT2/Ford L-467
- GMW 14872
- Renault ECC1
- VDA 233-102

JASO M609 (ISO 14993, 11997-1)

- Chamber Volume 1100 l
- Chamber Load 240 x 4" x 6" Steel Panels
- Laboratory Room Temperature 28-30 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	FOG	35		2:00	< 0:30
2	RH	60	25	4:00	< 0:30
3	RH	50	100	2:00	< 0:15
4	Final Step –	Go To Step 1			

JASO M609

Transition times for JASO M609 in full Q-FOG CRH 1100 HSCR Chamber.

			Transition Requirement	Time for Temperature to reach requirement	Time for Relative Humidity to reach requirement
	Fog to Dry	35 °C → 60 ± 1 °C / 20 - 30% RH	< 0:30	0:13	0:14
JASO M609	Dry to Wet	60 ± 1 °C / 20 - 30% RH → 50 ± 1 °C / > 95% RH	< 0:15	0:04	0:15
	Wet to Fog	50 ± 1 °C / > 95% RH → 35 °C	< 0:30	0:06	

Renault D17-2028 (ECC1)

- Chamber Volume 1100 l
- Chamber Load 240 x 4" x 6" Steel Panels
- Laboratory Room Temperature 26-28 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	FOG	35		0:35	
2	RINSE	35		0:05	
3	FOG	35		0:05	
4	RH	35	20	1:40	Linear 1:30
5	RH	35	55	1:35	Auto
6	Subcycle*				
7	RH	35	90	1:20	Auto
8	RH	35	55	2:40	Auto
9	Final Step – (Go To Step 1			
*Step 6: Subcycle Repeat Steps 7-8 5x					

Volvo VCS 1027, 149 (ACT I)

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	Subcyle*				
2	SHOWER	35		0:15	
3	RH	35	97	1:45	Auto
4	RH	45	50	4:00	Linear 2:00
5	RH	35	95	2:00	Linear 2:00
6	Subcyle**				
7	RH	35	95	4:00	
8	RH	45	50	6:00	Linear 2:00
9	RH	35	95	2:00	Linear 2:00
10	Final Step – G	Go To Step 1			
	Subcycle Repeat S	•			
**Step 6:	Subcycle Repeat	Steps 7-9 7x			

Volvo VCS 1027, 1449 (ACT-II)/Ford L-467

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25 °C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp	
1	Subcyle*					
2	SHOWER	25		0:10		
3	RH	25	95	0:20	Auto	
4	SHOWER	25		0:03		
5	RH	25	95	2:27	Auto	
6	SHOWER	25		0:03		
7	RH	25	95	2:54	Auto	
8	SHOWER	25		0:03		
9	RH	40	95	0:30	< 0:30	
10	RH	50	70	17:30	Linear 2:00	
11	RH	50	70	48:00	Auto	
12	Final Step –	Go To Step 1		 		
*Step 1: 9	*Step 1: Subcyle Repeat Steps 2-10 5x					

GMW 14872

- Chamber Volume 1100 l
- Chamber Load Empty
- Laboratory Room Temperature 22-25°C

Step	Function	Chamber Air Temp (°C)	RH (%)	Step Time (hh:mm)	Ramp
1	Subcycle*				
2	RH	25	45	0:27	Auto
3	SHOWER	25		0:03	
4	RH	25	45	1:30	Auto
5	RH	49	100	7:30	Linear 1:00
6	RH	49	95	0:30	Auto
7	RH	60	25	8:00	Linear 3:00
8	Final Step –	Go To Step 1			
*Step 1: 9	Subcycle Repeat	Steps 2-4 4x			

Questions?

info@q-lab.com