Light Stability Testing of Home and Personal Care Products

Dave Duecker – Technical Marketing Specialist

Andy Francis – Marketing Director

Bill Tobin – Senior Technical Marketing Specialist

Sean Fowler – Senior Technical Director

Q-Lab Corporation

View Recorded Presentation

Q-Lab's Weathering Webinar Series

- Today is the 3rd of our fivepart webinar series on special weathering testing topics
- Our upcoming and archived webinars are hosted at: <u>q-lab.com/webinars</u>

Date	Торіс	
14 Apr	Automotive Interior and Exterior Weathering Testing	
21 Apr	Modern Automotive Weathering Test: ASTM D7869	
28 Apr	Light Stability Testing of Home and Personal Care Products	
05 May	Water Delivery in Accelerated Weathering Testing	
12 May	Correlation in Accelerated Weathering and Corrosion Testing	

Housekeeping

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

- Our ongoing webinar series can be found at: <u>q-lab.com/webinarseries</u>
- Our archived webinars are hosted at: <u>q-lab.com/webinars</u>
- Use the **Q&A feature in Zoom** to ask us questions today!

Thank you for attending our webinar!

We hope you found our webinar on *Light Stability Testing of Home and Personal Care Products* to be helpful and insightful. The link below will give you access to the slides and recorded webinar.

You can help us continue to provide valuable and high quality content by completing our <u>3-question survey</u> about your webinar experience. Every piece of feedback is carefully reviewed by a member of our team.

We consistently hold seminars and webinars about weathering, corrosion, standards and more. The best way to keep up with news and events is by following us on Facebook, Twitter and LinkedIn.

What We Will Talk About

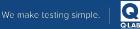
- Weathering Testing vs. Light Stability
- Common Light Spectra
- Natural Exposures
- Accelerated Testing
 - Xenon Arc Testing
 - Fluorescent UV Testing
- ICH Guidelines
- Best Practices and Practical Considerations

Weathering Testing

• Combination of sunlight, heat, and moisture

• Temperatures simulate realistic hot outdoor conditions

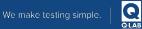
• Moisture (water spray or condensation) usually included


Light Stability Testing

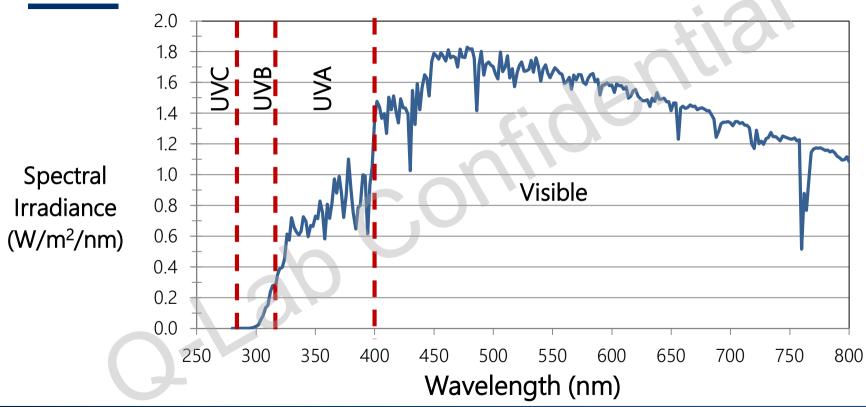
- Simulation of sunlight or indoor lighting
- No moisture* or elevated temperatures
- Test temperatures often simulate typical indoor environment

*May control RH to reduce variability

Which Should I Use?

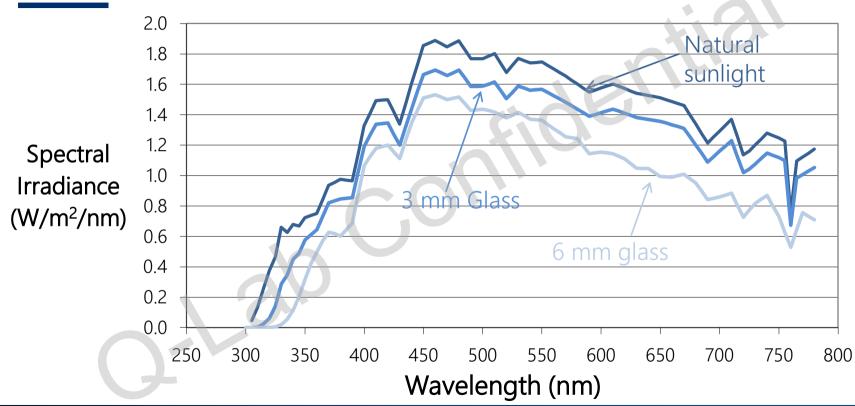

 If you're not sure how your material will perform, and want to test it for every environment, Run a Weathering Test

 If your material only needs to perform in a controlled environment, or you are only interested in the effect of light on your product,
Run a Light Stability Test

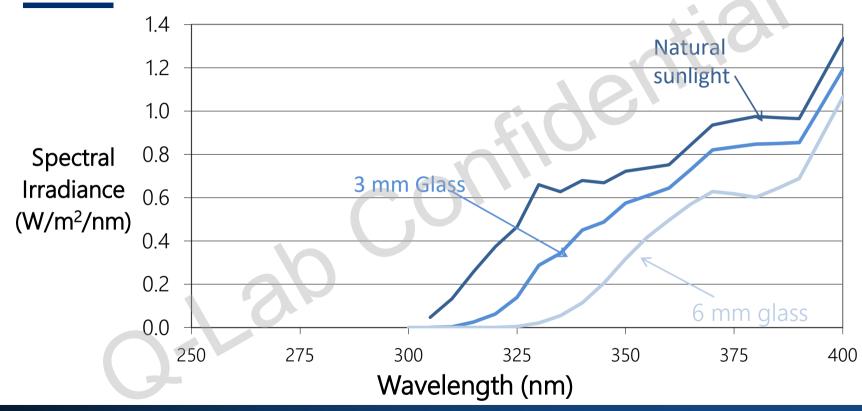


Common Light Spectra

- Sunlight
 - Direct
 - Through Window Glass
- Commercial Lighting
- Home Lighting

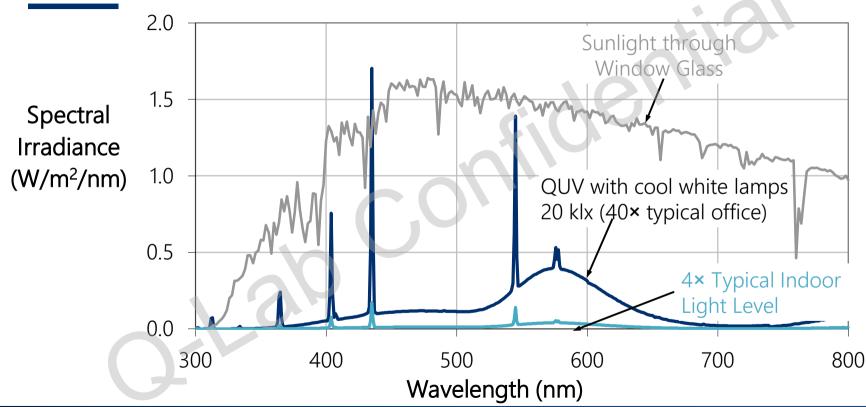


Summer Sunlight Spectrum



Sunlight through Window Glass

Sunlight through Window Glass


Interior Lighting

Commercial Indoor Lighting

Average Home Lighting



Q QILAB

Even Though It Is Only 5% of Sunlight...

UV Light Causes Most Photodegradation!

Natural Exposures

In order to find out how your material will last in its service environment...

Put it in the service environment!

Natural Exposures

- Benchmark Commercial Sites
- South Florida, Arizona Desert
 - Inexpensive
 - Reliable
 - Extreme environments create acceleration
- At your own facility
 - "Scientific Window Sill Testing"
 - Convenient
 - Easy to make frequent observations
 - DIY Exposures

Natural and Accelerated Exposures

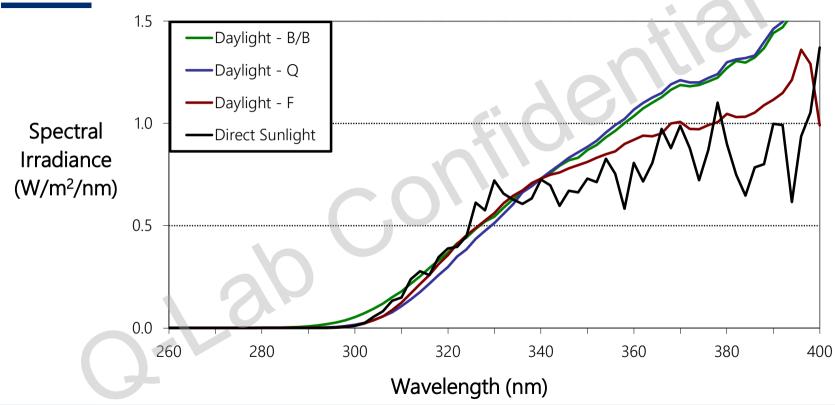
For many Fast Moving Consumer Goods (FMCGs), **natural** exposure testing at benchmark sites is very cost effective and can give you excellent data in a short amount of time

FMCGs can also be tested for light stability in even shorter periods of time with **accelerated** testing, usually with xenon arc or fluorescent UV testers

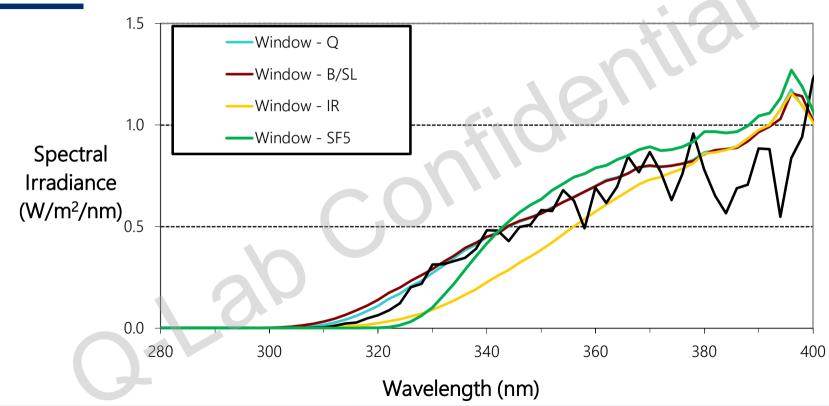
Q-SUN Xenon Test Chamber

Benefits of Xenon Arc Testing


- Realistic simulation of longwave UV and visible portion of sunlight
- Optical filters can simulate different kinds of glass
- Relative Humidity Control


Optical Filters

- Daylight Filters
 - Exterior exposures
- Window Glass
 - Indoor exposures, textiles, inks
- Extended UV
 - Automotive, aerospace



Xenon Arc with Daylight Filters

Xenon Arc with Window Filters

Irradiance Control

- Narrow Band
 - 340 nm
 - 420 nm
- Total UV (300-400 nm) Wide Band
- Global (300-800 nm) not recommended
 - Shorter wavelengths cause more photodegradation
 - Lamp aging can cause more than 50% reduction in critical UV wavelengths

26

Irradiance Control Point Conversion

Example: Window-B/SL filter

Control Point	Irradiance
340 nm	0.35 W/m²/nm
420 nm	0.79 W/m ² /nm
TUV (300-400 nm)	40 W/m ²

These conversion factors only apply for this particular filter

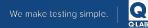
Temperature Control

- Black panel
 - Hotter than ambient in sunlight
 - Not necessarily same as specimen temperature
 - Exists for test repeatability and reproducibility
- Chamber air
 - Controlled somewhat independently
 - More relevant for some applications
- Chiller System
 - Removes heat to allow normal indoor temperatures inside xenon arc test chamber

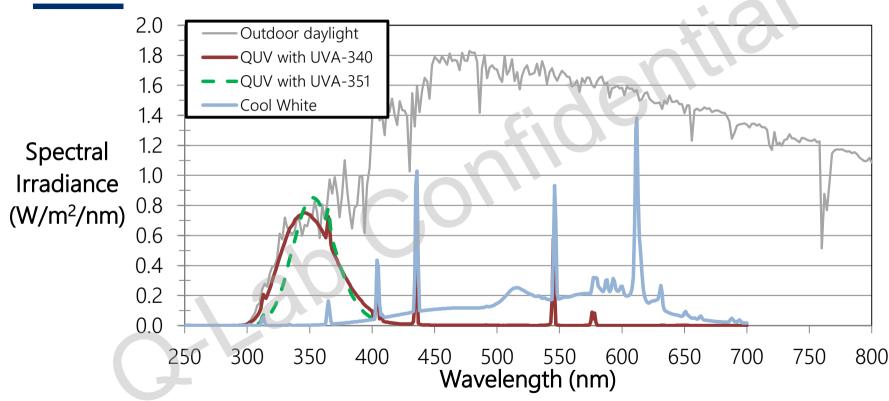
Black Panel Temperature Sensors

Panel	Construction	ASTM Designation	ISO Designation
g-lab.com	Black painted stainless steel	Uninsulated Black Panel	Black Panel
q-lab.com	Black painted stainless steel mounted on 0.6 cm white PVDF	Insulated Black Panel	Black Standard

* White Panel versions of the above are available but far less commonly used



QUV/se Weathering Testing and QUV/cw Light Stability Testing Chamber



Benefits of Fluorescent UV Testing

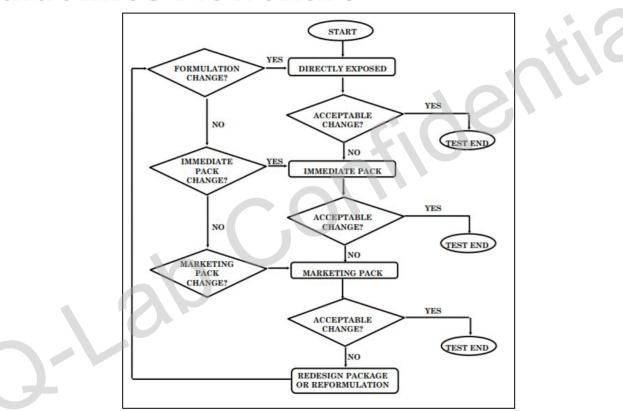
- Lower-cost solution
- Highly repeatable and reproducible spectrum
- Cool White lamps are an excellent reproduction of commercial lighting
- Very easy to use

Fluorescent UV Light Spectra

ICH Guidelines

International Conference on Harmonization: Guidelines

for the Photostability Testing of New Drug Substances and Products



- Joint effort of U.S., European, Japanese regulatory agencies
- New products and drug substances should not exhibit "unacceptable change" when exposed to light
- Two exposure options are available

We make testing simple.

ICH Guidelines Flowchart

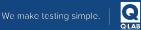
Two Exposure Options

- D65/ID65 light source*
 - "artificial daylight fluorescent lamp combining visible and ultraviolet outputs, xenon, or metal halide lamp"
 - Wavelengths below 320 nm may be filtered
- Cool white fluorescent and "near ultraviolet lamp"

* ICH Guidelines cite ISO 10977 on photographic films and prints, which is withdrawn and replaced by ISO 18909. They refer to CIE 15, Recommendations on Colorimetry. CIE85 / CIE241 Solar Spectral Irradiance would have been a better choice for lightstability tests.

Radiant Exposure

• Exposures are based on UV radiant and illuminance dosages


• Illuminance is a measure of visible light that takes irradiance dosage and applies the human photopic response curve

We make testing simple.

Radiant Exposure Criteria

- Two exposure values must be reached:
 - 1.2 million lux-hours (per m²) minimum (visible light by definition)
 - 200 Watt-hours UV (per m²) minimum
- These do not correspond specifically to either the D65 or ID65 reference light source
- No single light source can meet the visible light exposure conditions without significant "over-exposure" of the UV portion
- "Over-exposure" is perfectly acceptable

Value 1: Calculating Lux-hours

Irradiance (W/m²) at each wavelength × Photopic Response (lumens/W) at wavelength =

Illuminance (lumens/m²) or lux

Example:

Wavelength	Photopic Respons	se	Irradiance		Illuminance
(nm)	(lumens/W)		(W/m^{2})		(lumens/m²)(lux)
555	683.00	×	0.33	=	227.2

Sum the values at each wavelength, multiply by exposure time in hours

Photopic Response & Photonic Energy 10 100% 2 75% Photopic Energy (10⁻¹³ joules) Response Ž otopic 50% Relati Photonic 4 25% Energy

2 + 250

300

350

400

450

500

550

Wavelength (nm)

600

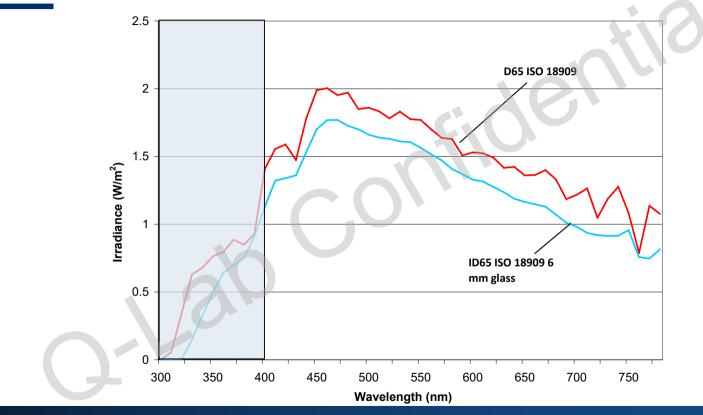
650

700

750

QLAB

0%


800

Value 2: Calculating TUV Watt-hours

- SPD data gives you irradiance (W/m²) at each wavelength
- Sum irradiance at wavelengths 300-400 nm (<u>Total UltraViolet or "TUV</u>")
- Multiply this number by exposure time measured in hrs

 $40 \text{ W/m}^2 \times 10 \text{ hours} = 400 \text{ W-hours/m}^2$

Total UV Exposure (TUV, 300-400 nm)

QLAB

Temperature

Temperature is not specified, however ...

- Thermal degradation should be evaluated separately in heat aging tests, not during lightfastness testing. Therefore, testing at normal room temperature ranges is desirable
- Room temperature testing requires chilling the air circulated through the chamber

Q

Performing Option 1

- Q-SUN Xe-1-BCE
- Window Q Filter (ID65 3 mm glass spectrum)
- 420 nm irradiance control point, 1.10 W/m2/nm
- Chamber Air temperature control, 25 °C

QLAB

Option 1

Test duration

- Run test for 13.3 hours
- 775 Watt-hours UV (287% more UV than required)
- 1.2 million lux-hours

To reduce the UV exposure, run in two parts

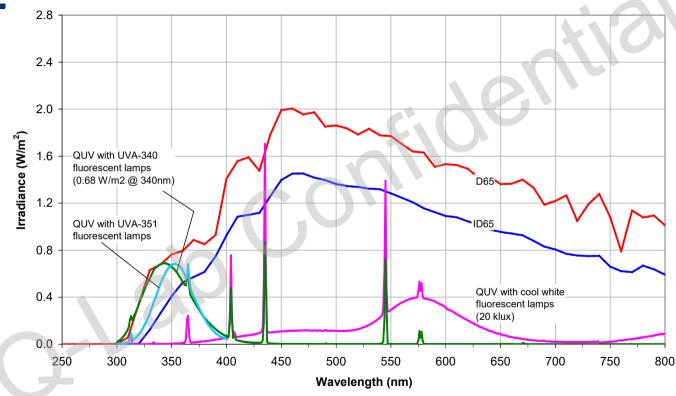
- Part 1: Run until 200 W-hr/m² TUV exposure, using Window-Q Filters
- Part 2: Add a UV Blocking filter, recalibrate, and run to achieve 1.2 million Lux-hours (no additional TUV)

Irradiance & Test Time

Option 1, Q-SUN with Window-Q

Irradiance @ 420 nm	Hours	Lux-hours	TUV Dosage (Watt-hr/m ²)
0.60 W/m ²	26.6	FIO.	
0.70 W/m ²	22.8		
0.80 W/m ²	20.0		
0.90 W/m ²	17.8	1.2 million	775
1.00 W/m ²	16.0		
1.10 W/m ²	14.6		
1.20 W/m ²	13.3		

Multiple pathways to reach the specified exposure criteria



Option 2

Step 1: QUV with cool white lamps Set Point: 20,000 lux Time: 60 hours

Step 2:QUV with UVA-351 lampsSet Point:0.55 W/m²/nm @ 340 nmTime:4 hours

QUV Light Spectra and ICH Guidelines

QLAB

Best Practices and Practical Considerations in Light Stability Testing

1. Perform natural exposures

- Necessary for understanding accelerated results
- Does lab test correctly rank material performance?

Miami outdoor exposures

2. Test until failure (forced degradation)

- Required for drug products
 - o Identify impurities resulting from photodegradation
 - o Determine degradation pathways
- Necessary for developing rank order performance

QLAE

- 3. Expose a control with your test specimen
 - Use Control Material of Known Durability
 - Outdoor performance
 - Lab performance
 - Similar Composition to Test Material
 - Similar Degradation Mode to Test Material

Benefits of a Control

- Compare performance of control to a known material
- Allows confidence in lab exposure
- Assure that laboratory tester is operating properly

4. Test your product "In the package" in order to simulate the actual service environment


Whole Product Testing

Q-SUN Xe-3 3200 cm²

Q-SUN Xe-1 1100 cm²

5. Use realistic temperatures to prevent unrealistic failures

Testing with a chiller system (Xe-1 or Xe-3) allows for higher irradiance while maintaining cool temperatures

Thank you for your attention!

Questions?

Send your inquiry to: info@q-lab.com

