Water Delivery in Accelerated Weathering Testing

Andy Francis Marketing Director

Dave Duecker Senior Technical Marketing Specialist

Bill Tobin Senior Technical Marketing Specialist

Sean Fowler Senior Technical Director

Q-Lab Corporation

View Recorded Presentation

Q-Lab's Weathering Webinar Series

- Today is the 4th of our fivepart webinar series on special weathering testing topics
- Our upcoming and archived webinars are hosted at: q-lab.com/webinars

Date	Topic				
14 Apr	Automotive Interior and Exterior Weathering Testing				
21 Apr	Modern Automotive Weathering Test: ASTM D7869				
28 Apr	Light Stability Testing of Home and Personal Care Products				
05 May	Water Delivery in Accelerated Weathering Testing				
12 May	Correlation in Accelerated Weathering and Corrosion Testing				

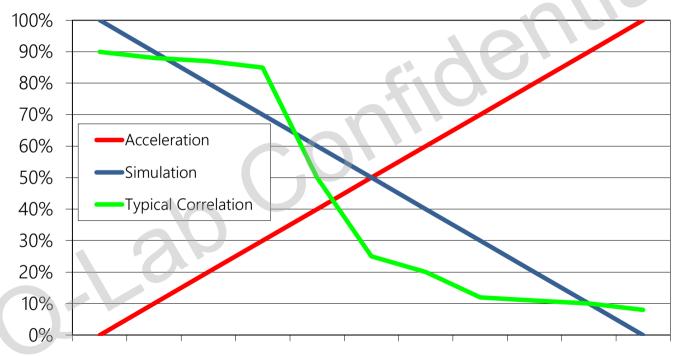
Housekeeping

You'll receive a follow-up email from info@email.g-lab.com with links to a survey, registration for future webinars, and to download the slides

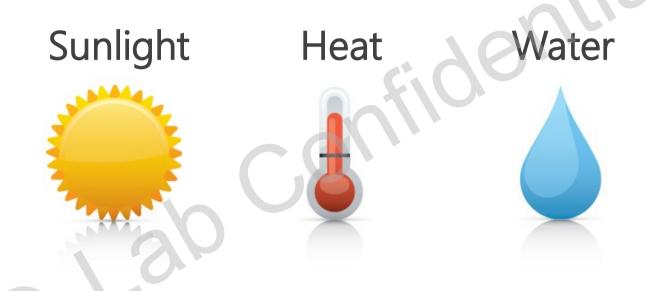
- Our ongoing webinar series can be found at: q-lab.com/webinarseries
- Our archived webinars are hosted at: q-lab.com/webinars
- Use the **Q&A feature in Zoom** to ask us questions today!

We make testing simple.

Thank you for attending our webinar!


We hope you found our webinar on Water Delivery in Accelerated Weathering Testing to be helpful and insightful. The link below will give you access to the slides and recorded webinar

You can help us continue to provide valuable and high quality content by completing our 3-question survey about your webinar experience. Every piece of feedback is carefully reviewed by a member of our team.


Accelerated Testing

Simulation, Acceleration, and Correlation

Forces of Weathering

Sunlight in Laboratory Weathering Testing

Defined light source

Plastics — Methods of exposure to laboratory light sources —

Part 2:

Xenon-arc lamps

Spectral requirements

Spectral passband (λ = wavelength in nm)	Minimum ^c	CIE No. 85:1989, <u>Table 4</u> de %	Maximum ^c %	
λ < 290			0,15	
$290 \le \lambda \le 320$	2,6	5,4	7,9	
320 < λ ≤ 360	28,2	38,2	39,8	
$360 < \lambda \le 400$	54,2	56,4	67,5	

Irradiance values, control points, and tolerances

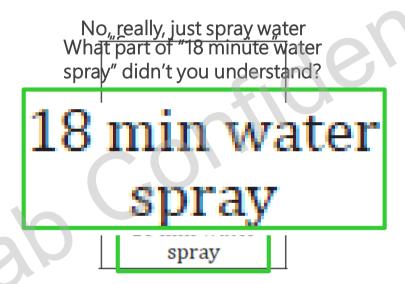
Irradiance ^b					
Broadband (300 nm to 400 nm) W/m ²	Narrowband (340 nm) W/(m²·nm)				
60 ± 2 60 ± 2	0,51 ± 0,02 0,51 ± 0,02				

Heat in Laboratory Weathering Testing

Black panel temp with tolerances

Black-standard temperature °C

Thermal Cycling


Step Number	Step Minutes	Black Panel Temperature Set Point ^A	Chamber Air Temperature Set Point ^A
1	240	_	40°C
2	30	50°C	42°C
3	270	70°C	50°C
4	30	50°C	42°C
5	150	_	40°C
6	30	_	40°C
7	20	50°C	42°C
8	120	70°C	50°C
9	10	_	40°C

Ambient temp with tolerances

Chamber temperature °C

Water in Laboratory Weathering Testing

This is not enough information!

Water Purity in Laboratory Weathering Testing

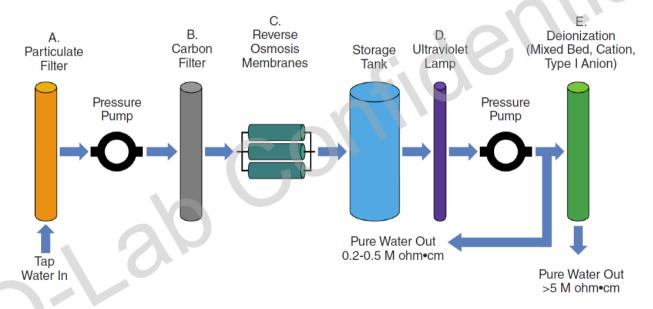
Water Purity QUV Requirements

Model	Pressure	Condensation Volume	Spray Volume	Resistivity	Conductivity	Total Dissolved Solids	рН
QUV/spray	45-80 psi [*] (280-550 kpa)		7.0 liters/min	>200k ohm•cm	<5.0 μS/cm	-0 5 nnm	6-8
QUV/spray/rp	2-80 psi (20-550 kpa)	5.0 liters/day	7.0 liters/min**		<5.0 µ5/GII	<2.5 ppm	0-0
QUV/se QUV/cw	2-80 psi (20-550 kpa)	20	NA		Tap Wate	r	

Spray systems require higher-purity water than condensation-only systems
Repurification system is NOT a primary purification system

Tap water in non-spray systems will require more frequent cleaning

Water Purity Q-SUN Requirements


Spray System (Model)	Inlet Pressure	Flow Setting	Average Daily Volume	Resistivity	Conductivity	Silica	Total Dissolved Solids	рН
Front Spray* ("S" models)	30-90 psi	1.4 liter/min	0.16 liter/minute × spray time***	>5M ohm•cm <0.2 µS/cm		<0.1 ppm	(0.1 ppm) (6-8
Front and Back Spray* ("B" models)	(207-620 kPa)	15 psi**	0.65 liter/minute × spray time***		<0.2 μ3/cm	со. г ррпп	<0.1 ppm	0-0
Humidifier (non-"S" models)	10-90 psi (69-620 kPa)	0.1 liter/min	44 liters/day	> 200k ohm•cm	<5.0 μS/cm	Not Important	<2.5 ppm	6-8

Spray systems require higher-purity water than humidity-only systems

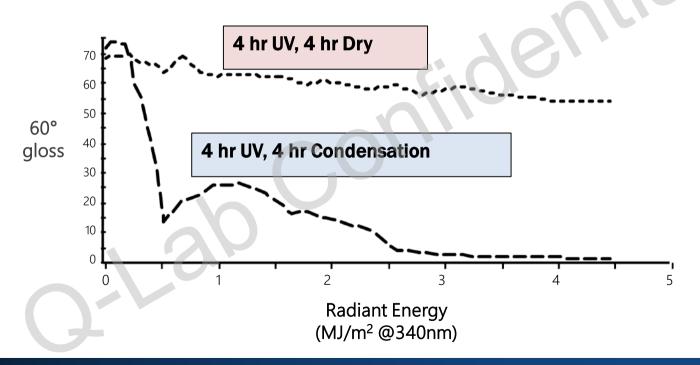
Repurification system is NOT a primary purification system

Water Purity RO/DI system

Q-Lab recommends this type of system for all Q-SUN xenon and QUV spray instruments

Water Delivery in Accelerated Lab Testing

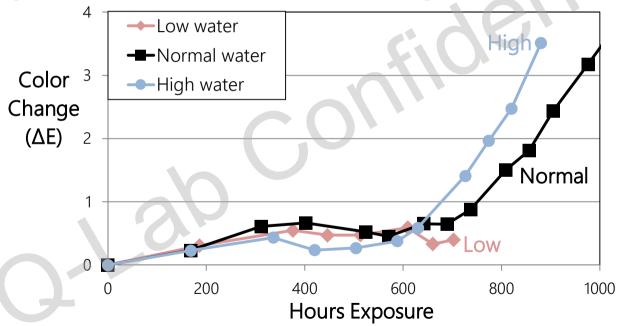
Water contributes to material degradation in many ways


- Plasticization
- Swelling
- Blistering
- Adhesion
- Mass transport
- Mass loss

We make testing simple.

UV Fluorescent Weathering

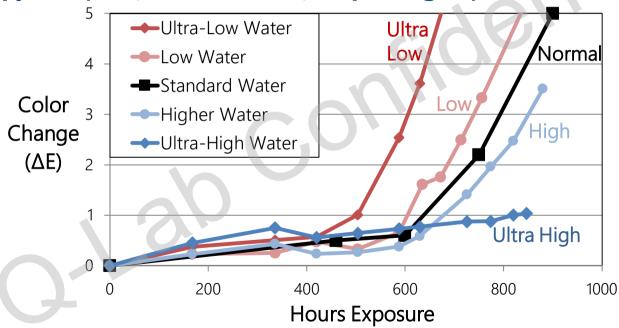
Water Delivery Accelerating Gloss Loss



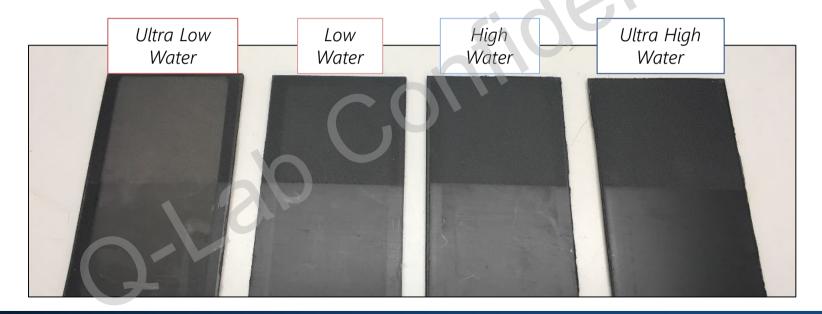
Xenon arc Weathering

Water Delivery Accelerating Color Change

Polypropylene (Talc, Carbon Black, UV package 1)



Xenon arc Weathering


Water Delivery Inhibiting Color Change

Polypropylene (Talc, Carbon Black, UV package 2)

Xenon arc Weathering

Water Delivery Inhibiting Color Change Polypropylene (Talc, Carbon Black, UV package 2)

Water in Laboratory Weathering Testing

- Water significantly influences test results for many materials
- Compared to Sunlight and Heat, in lab testing Water is:
 - Less quantified
 - Less accelerated
- Today we will look at standards that *do* emphasize water
 - ASTM G90 (solar concentrator)
 - EN 927-6 (UV fluorescent)
 - ASTM D7869 (xenon arc)

Water Delivery in Accelerated Outdoor Testing

ASTM G90

Standard Practice for Performing Accelerated Outdoor Weathering of Materials Using Concentrated Natural Sunlight

Outdoor accelerated testing

Natural solar concentrator

 5× the UV light of natural exposure

 High temperatures from desert conditions and concentrated irradiance

Outdoor accelerated testing

Daytime water delivery

 Daytime spray dries quickly, causes thermal shock

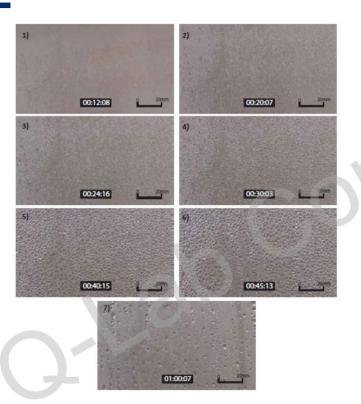
 Polymer matrices do not absorb any water!

Outdoor accelerated testing

Nighttime water delivery

Test Cycle	Daytime			Nighttime		
	Spray duration	Dry duration	Cycles	Spray duration	Dry duration	Cycles
1	8 min	52 min	1 / hr	8 min		3 per night: 21:00, 00:00, 03:00
3	none		3 min	12 min	4 per hour (40 total) 19:00-05:00	

- Frequent nighttime spray cycles = high Time of Wetness
- Increased water uptake of coatings more realistic test


Water Delivery in Fluorescent UV Testing

EN 927-6

Paints and Varnishes - Coating Materials and Coating Systems for Exterior Wood

Fluorescent UV Testing: Condensation

 Condensation function an excellent simulation of natural dew

 Hot condensation (~50 °C) accelerates moisture attack

Fluorescent UV Testing: Water Spray

 Usually just short sprays for thermal shock

• EN 927-6 introduces longer, frequent water spray to reproduce erosion in wood coatings

Water Spray Validation

- QUV testers have a spray window
- Disables interlocks but blocks UV light for safety
- Easy verification of proper spray nozzle operation

Fluorescent UV Testing

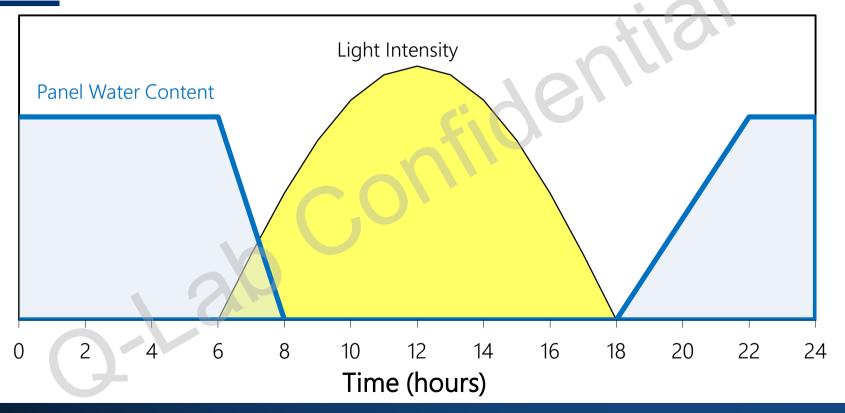
Erosion of wood coatings from water spray

"Improving of coatings durability on selected kinds of wood in the exterior applications", No. TH02020873 financed by TAČR

Water Delivery in Xenon arc Testing

ASTM D7869

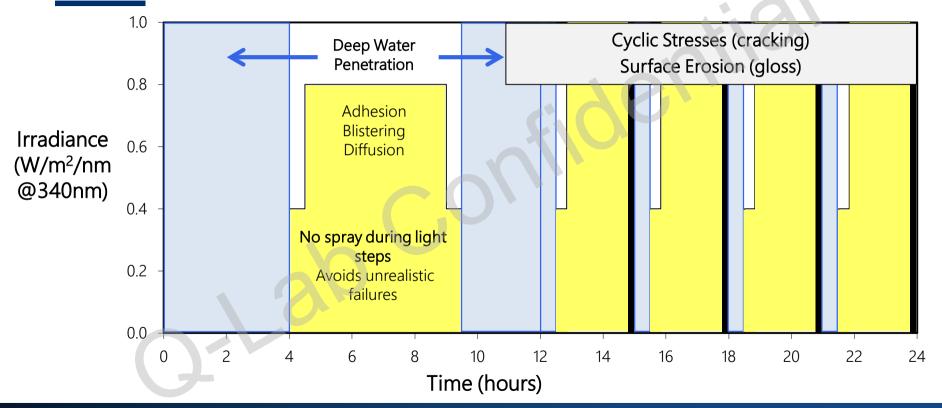
Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings



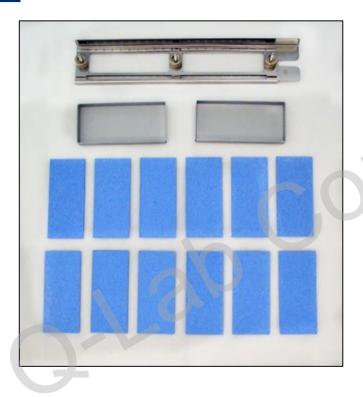
Xenon arc Accelerated Lab Testing ASTM D7869

- ASTM D7869 simulates and accelerates Sunlight, Heat, and Water from outdoor weather
- Test validated by comparison to long-term outdoor weathering data from aerospace and automotive coatings
- Test is realistic it reproduces faithfully almost all physical failure mechanisms.
- Test is fast 30% acceleration over related test methods.
- Accelerated testing that correlates with outdoor test data for transportation coatings. May be suitable for other products as well

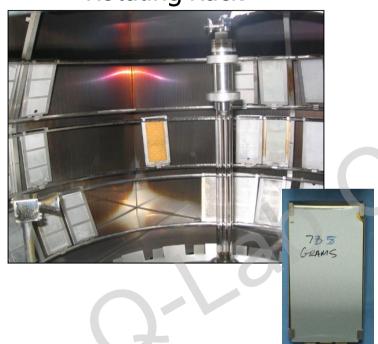

Outdoor Daily Weather Cycle

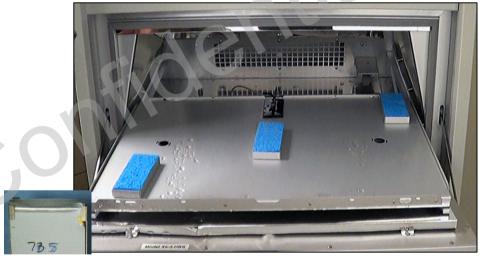


ASTM D7869 Test Cycle



ASTM D7869 Water Delivery



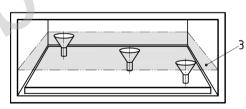

Calibrated sponge used to ensure coating saturation from water delivery

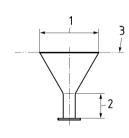
ASTM Water Delivery Calibration

Rotating Rack

Shielded sponge holder

ISO 23741: New Standard for Water Delivery


INTERNATIONAL STANDARD


ISO 23741

- Standard method to determine water delivery in xenon arc testers
- Rotating rack or flat array

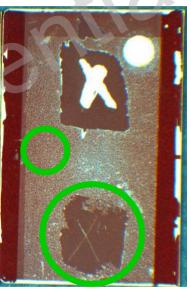
Plastics — Determination of spray water delivery during spray cycles when using a xenon arc weathering test apparatus

ASTM D7869 Test Result

ASTM D7869 Florida Exposure **SAE J2527**

- Water-deficient tests reproduce some coating failure modes
- ASTM D7869 reproduces more, including water-based delamination

ASTM D7869 Test Result


Florida Exposure

SAE J2527

ASTM D7869

- Water-deficient tests reproduce some coating failure modes
- ASTM D7869 reproduces more, including water-based blistering

Conclusions

- Sunlight, Heat, and Water are all delivered to specimens during accelerated weathering testing
- Water contributes to many failure modes but is often underspecified and underdelivered in test standards
- Some modern test standards including ASTM G90, EN 927-6, and ASTM D7869 take greater care to accelerate water delivery
- ISO 23741 now standardizes quantification of water delivery to specimens
- Effect of water on testing is highly material-dependent important to actually conduct the testing!

Thank you for your attention!

Questions?

Send your inquiry to: info@q-lab.com

